NASA/CR-97- 205863

PRELIMINARY REPORT OF NRC TWIN OTTER OPERATIONS IN THE 1997 SOUTHERN GREAT PLAINS EXPERIMENT

J. I. MacPherson

Flight Research Laboratory
National Research Council of Canada

12 113 - 115 12 - 143 - 175 2017

SUMMARY

From June 18 to July 17, 1997, the NRC Twin Otter atmospheric research aircraft was operated from Oklahoma City, U.S.A., in the Southern Great Plains 1997 (SGP97) Hydrology Experiment. The primary role of the aircraft was to measure the vertical fluxes of sensible and latent heat, CO₂, ozone and momentum in the atmospheric boundary layer, along with supporting meteorological and radiometric data. Approximately 400 flux runs and 100 soundings were flown in 27 project flights over rural areas near Oklahoma City. This preliminary report documents the flight program, lists the instrumentation aboard the aircraft, and presents a summary of run-averaged data from each flux run. These data are from the in-field analysis and must be considered preliminary. A re-analysis incorporating updated calibrations is planned for the fall of 1997 followed by a more comprehensive technical report.

Ottawa, Ontario, Canada October 2, 1997

PRELIMINARY REPORT OF NRC TWIN OTTER OPERATIONS IN THE 1997 SOUTHERN GREAT PLAINS EXPERIMENT

1.0 INTRODUCTION

The Southern Great Plains 1997 (SGP97) Hydrology Experiment was motivated by the wide-spread interest among hydrologists, soil scientists and meteorologists in the problems of estimating soil moisture and temperature states at the continental scale and the coupling between the land-surface and the atmosphere (Ref. 1). The main objective was to develop algorithms using remotely sensed microwave data to measure soil moisture at scales expected from future satellite-based systems. Three remote sensing aircraft participated in SGP97; the NASA P-3 employing ESTAR (Electronically Scanned Thinned Array Radiometer), the Ontario Government Navajo Chieftain carrying the CASI imaging spectrometer, and the U.S. Dept. of Energy Cessna Citation fitted with TIMS (Thermal Infrared Multispectral Scanner). Ground truthing was achieved through a variety of surface-based programs, as detailed in the SGP97 Experiment Plan (Reference 2).

The objective of the boundary layer component of SGP97 was to determine the influence of soil moisture on the local surface energy budget and the effect of mesoscale variability on the development of the convective boundary layer. Several flux towers were used to make near-surface measurements over rangeland and winter wheat crops. The NASA P-3 operated the Lidar Atmospheric Sensing Experiment (LASE) which remotely sensed the atmospheric water vapour and aerosol profiles. The NRC Twin Otter was one of two 'immersion-sensing' aircraft that made measurements of the energy fluxes in the convective boundary layer throughout the experiment. The second was the Long-EZ operated by the Atmospheric Turbulence and Diffusion Division of the National Oceanic and Atmospheric Administration (NOAA). The University of North Dakota (UND) Cessna Citation joined the project for three days in the last week of SGP97, primarily to conduct intercomparisons with the Twin Otter.

The Twin Otter flew 82.8 hours in 27 project flights, and a total of 105 hours including transit and tests. Nearly 400 flux runs were flown on tracks 15 to 30 km in length over rural Oklahoma, mostly west and north of Oklahoma City. Approximately 100 soundings were flown, characterizing the atmosphere from near the surface (30 m) to above the top of the mixed layer. Fourteen intercomparison runs were flown with the Long-EZ, and four with the UND Citation. Although the majority of the Twin Otter flights occurred around mid-day (10 a.m. to 3 p.m. local time), some flights were also devoted to the morning and evening transition periods.

This preliminary report consists mostly of tables produced during the field phase of the experiment. They list the instruments used on the aircraft and any operational problems encountered on each flight, summarize the entire flights as well as the individual flux runs and soundings, and tabulate the run-averaged data. In October or November, 1997, the Twin Otter data will be reprocessed at NRC, employing updated calibrations as well

as a Kalman filtering technique (Reference 3) that removes small biases (typically, up to 1 m s⁻¹) in the measured horizontal wind components. A more comprehensive Laboratory Technical Report will follow.

2.0 INSTRUMENTATION

Figure 1 is a schematic diagram of the Twin Otter showing the mounting locations of the instruments flown in SGP97. Table 1 lists the sensors, type of output signal, and the label of the associated variables in the aircraft software. Table 2 lists the parameters and their units recorded at 32 Hz on the aircraft's Digital-Audio-Tape (DAT) unit.

2.1 Air Motion

The Twin Otter is instrumented to measure the three orthogonal components of atmospheric motion over a frequency range from 0 to 10 Hz. The true air motion is derived from the vector difference between the air velocity relative to the aircraft and the aircraft 'inertial' velocity relative to the ground (strictly speaking, the rotating Earth is not an inertial frame of reference, but for ease of expression the term 'inertial' in this report will mean 'relative to the Earth').

Air motion relative to the aircraft is measured by a nose-mounted gust boom incorporating a Rosemount 858AJ28 5-hole probe. This device and the associated pressure transducers measure static pressure (altitude), dynamic pressure (airspeed) and the angles of attack and sideslip. A second altitude/airspeed system employs a separate set of pressure transducers connected to the fuselage-mounted pitot and static ports.

The primary system on the aircraft for the measurement of the inertial velocity vector is a Litton LTN-90-100 Inertial Reference System (IRS). For this project, the on-board VME-based microprocessor computed and recorded two sets of winds, differing primarily in the means used to determine the inertial velocity. They are the following:

1) Litton winds: The true airspeed (TAS) vector is resolved into earth-fixed axes using the attitude angles and heading from the LTN-90 IRS. The 3-axis inertial velocities from the IRS are then subtracted from the TAS components to derive the 3-axis winds. This is the method used on most atmospheric research aircraft. It is subject to approximately 1 m s⁻¹ errors in the horizontal components due to IRS drift caused by the Schuler oscillation phenomenon. The NRC Flight Research Laboratory (FRL) has developed a Kalman filtering and smoothing technique that combines IRS data with redundant navaid data (e.g. GPS, VOR/DME) to correct the IRS velocity, position, heading and attitude data for these oscillations (Reference 3). This procedure will be applied in subsequent processing to correct the wind measurements for all of the Twin Otter SGP97 flights.

2) Backup winds: This uses a complementary filtering routine in which the low frequency contribution to the inertial velocity is provided by the Trimble GPS and pressure altitude, and the high frequency components are derived from an FRL-assembled package of accelerometers and rate gyros.

Secondary Back-up winds: In SGP97 the Twin Otter also carried a NovaTel RT-20 GPS system which measured position and inertial velocities to a greater accuracy than the Trimble GPS. These data are used in the ground-based playback system to compute another set of 3-axis wind velocities that appear to be more accurate than the back-up winds computed in flight (2 above).

Further details on these wind computation methods are given in Reference 4, along with the equations used to derive the wind and gust components and the fluxes. In SGP97, the only operational problem affecting the Litton IRS occurred for three runs on Flight 01, in which the back-up winds were used; for ALL other runs, the Litton winds described in (1) above were used in the flux computations and data summaries.

2.2 Position

The Twin Otter carried a Trimble Model TNL-7880SR GPS/VLF/Omega navigation system, which was used for flying accurate tracks and for recording aircraft position. The system was operated in the GPS mode throughout SGP97, and position and velocity data were recorded at 32 Hz.

To fly the desired tracks for flux-measuring runs, GPS navigation was used, with heading and cross-track deviation fed to the pilot's flight director in the instrument panel. A second, more sensitive display, featuring track-angle error in addition to cross-track deviation, was mounted atop the coaming of the instrument panel, well within the pilot's heads-up scan. This display was driven by the airborne microprocessor and had a full-range deviation of +/- 0.5 nautical miles.

Aircraft position data were also available from the LTN-90 Inertial Reference System. This system is subject to the Schuler oscillation, in which the indicated position can drift in error up to approximately one nautical mile per hour. Finally, a third set of position data, including height above sea level, was provided by the NovaTel RT-20 GPS, which proved to be very accurate.

2.3 Temperature and Dew Point

The primary total temperature measurement was made by a Rosemount fast-response 102DJ1CG heated probe mounted on the port side of the aircraft nose (Fig. 1; TTF, Table 1). An alternative backup total temperature measurement was made by an

identical probe mounted on the starboard side of the nose (Fig. 1) and referred to as TTNB in Table 1 and the aircraft software. The airborne software routinely uses TTF in the calculation of static temperature and the true airspeed; but, in the event of a sensor problem, the alternative TTNB can be selected through use of function switch #5 on the computer control console in the cockpit. In the playback software, a sensible heat flux estimate is computed using data from each temperature; it is rare that these two flux estimates differ by more than 2 or 3 Wm⁻².

During SGP97, the signal from the port temperature probe had small noise spikes, or steps of about one degree, that resulted in errors in the standard deviation of its signal and in its sensible heat flux. Consequently, data from the starboard temperature probe were used for both the airborne wind and flux calculations and ground post-flight processing.

At this writing, the two temperature probes are being prepared for a wind tunnel test to verify their frequency response, as part of an investigation into possible under-estimation of sensible heat fluxes by aircraft when compared with flux towers (References 5 and 6). Computer simulations suggest that the sensible heat flux derived in the in-field analysis may be 20 percent low for runs flown at the lowest altitudes (30 m).

Dew point temperature was measured using an E, G and G Model 137 Cambridge dew point sensor mounted on the starboard side of the Twin Otter nose (Fig. 1).

2.4 Carbon Dioxide and Water Vapour

The fast-response concentration measurements required for the C0₂ and H₂0 flux calculations were made by two separate systems on the Twin Otter during SGP97. The first of these, the ESRI infrared gas analyzer developed by Agriculture Canada (Reference 7), has been flown on the aircraft for about 13 years. The test section of the analyzer was mounted within a large duct that captured flow above the aircraft, entered the cabin through the roof, and passed through the rear of the cabin to exit through the floor (Fig. 1). The system had a flow rate of approximately 300 litres/sec. The duct was also instrumented for the measurement of the airspeed, temperature and density of the sampled air, in order to calculate the instantaneous C0₂ and H₂0 mixing ratios. The ESRI analyzer had an effective frequency response of 15 Hz. When used in flux calculations, the time histories of the ESRI data must be advanced 1/4 second to account for the lag due to the longitudinal displacement of the instrument from the primary vertical gust sensor, the Rosemount 858 probe on the noseboom.

Data from the ESRI analyzer are suitable for use with the vertical gust velocity and the eddy correlation technique to derive fluxes. However, the analyzer is not well suited to the measurement of absolute concentrations of $C0_2$ and water vapour, for its sensitivity can change a few percent during flight because of dirt accumulation on its mirrors. For this reason, a slightly slower-response LI-COR LI-6262 $C0_2/H_20$ analyzer was also

mounted in the rear rack, with its sample air drawn from the duct via a 3/8-inch plastic tube. Recorded data from this analyzer are used in the data summary tables for mean C0₂ concentration in ppm. Fluxes are also calculated from the LI-COR data, after correcting for a lag of 1/2 second. Cospectra from low-altitude flux runs reveal that the slower-response LI-COR under-estimates the flux contribution at wavelengths shorter than 50 m when compared with the ESRI device (Fig. 4 of Ref. 6).

The ESRI device gave consistently larger downward C0₂ fluxes than the LI-COR unit. Only a fraction of this was due to frequency response. Reference 6 discusses possible instrument problems and a sensitivity to acceleration that likely caused the elevated C0₂ fluxes from the ESRI unit. The SGP flights indicate that some of these problems persist. Thus C0₂ flux data quoted in this preliminary report are derived from the LI-COR 6262 unit.

For SGP97, the aircraft was fitted with an airborne calibration system for the LI-COR C0₂ signal. On activation from the cockpit or cabin, two reference gases sequentially passed through the analyzer for 30 seconds each, the first with zero ppm of C0₂, the second with 450 ppm. The signals recorded during these calibration periods will allow the adjustment of the zero and span of the LI-COR C0₂ calibration for subsequent data processing. This has *not* been applied to the data listed in this preliminary report. Adjustments in mean C0₂ concentrations are unlikely to amount to more than approximately 3 percent, however.

For water vapour (latent heat) fluxes, the agreement between the ESRI and LI-COR 6262 devices was much better than for CO₂. In this preliminary report, the latent heat fluxes quoted were derived from the LI-COR analyzer. Calibration data indicate that the LI-COR H₂0 signal was likely approximately 4 percent low for the first 5 flights of SGP97.

2.5 Ozone Analyzers

The Twin Otter carried two ozone analyzers in SGP97, one slow-response unit for mean concentrations and one fast-response analyzer to measure ozone fluxes and deposition velocities.

The Air Quality Processes Research Division of the Atmospheric Environment Service of Canada (AES) provided a TECO-49 UV-absorption ozone analyzer to measure mean absolute ozone concentrations on the Twin Otter. This was mounted on rack-3 in the aircraft cabin with sample air drawn from an inlet extending above the cabin roof. Its signal was digitally recorded to a resolution of 0.1 ppb per bit over a range of zero to approximately 200 ppb. The TECO operates using two cells, one a reference and one a sample cell. At an interval of 10 seconds, a new analysis reading is output and the cells trade functions. Consequently, the output signal only appears to update at an interval of 10 seconds. It is not useable for flux measurements.

The second ozone analyzer flown in SGP97 was a Scintrex LOZ-3 Ozone Detector, which detects the chemiluminescence produced when ozone encounters a surface wetted with a specially formulated solution of Eosin-Y. This unit has a time constant of about a second, and requires a lag adjustment of 2.6 seconds when used in a flux calculation on the Twin Otter. Cospectra shown in Figure 7 of Reference 6 show little contribution at wavelengths shorter than 50 m, so fluxes can be expected to be under-estimated at the lowest flight levels.

2.6 Radiometers

The incident solar radiation (RADUP) was measured with a Kipp and Zonen CM-11 pyranometer with a 305-2800 nm spectral range. This device was mounted on the aft fuselage of the aircraft (see Fig. 1) which is tapered. It is mounted so that its sensing axis is tipped forward 3 degrees relative to the IRS axis to compensate for the mean pitch angle of the aircraft in flight. In the data analysis routine, software has been developed to continuously correct the upward radiometer reading for its mounting alignment and for variations in the heading and the pitch and roll attitudes of the aircraft throughout each flight. The equations used are described in Reference. 4. The procedure utilizes the recorded GMT, pitch and roll attitude, heading, latitude and longitude. The only terminal input required is the sun declination angle from Table 169 of Reference 8. In the in-field analysis this procedure was not applied to all of the clear sky cases, but will be in the subsequent analysis.

There was no direct measurement of net radiation made on the Twin Otter. Rather, it was calculated at each 1/32 second using incident and reflected solar radiation (RADUP and RADOWN), with longwave contributions derived from PRT-5 surface temperature (Ts in deg K) and air temperature (Ta in deg K) in the following equation:

NETRAD = RADUP-RADOWN +
$$[1.20 \circ \sigma \circ Ta^4 - 171.0] - [0.98 \circ \sigma \circ Ts^4]$$
 (1)

where the last two terms represent estimated incident and reflected longwave components, using the Stephan-Boltzmann Constant $\sigma = 5.6924 \cdot 10^{-8}$ and a surface emissivity of 0.98. In past experiments, this computed value of net radiation has agreed quite well with tower measurements (eg., Reference 6).

Some difficulty was experienced in this project with the calibration of the radiometers, the probable result of a grounding fault. Consequently, the net radiation listed in the field-analyzed data summarized in this report (Table 6) is in error. It is approximately 10 percent too high for Flights 1-8, and approximately 20 percent high for Flights 9-16. For Flights 17-27 the net radiation listed is about 40 W m⁻² low. In the re-analysis process this will be corrected to the latest calibrations.

For SGP97, the Twin Otter carried both an upward- and downward-looking Skye Industries Vegetation Greenness Indicator, which measures a ratio of near-infrared (730)

nm) to red (660 nm) radiation. The downward reading can be correlated with the amount of vegetation beneath the aircraft. The upward-facing unit was installed to allow a possible normalization of the downward reading to remove small changes seen in past projects associated with the variations in total solar radiation, such as those encountered in the shadows of clouds. A grounding fault appears to have affected the calibration of the downward-looking greenness index, in particular the 660 nm signal, which was approximately 0.6 too low. In low-light or overcast conditions, the under-reading of the 660 nm signal resulted in an over-estimated Greenness Index (Green 730/Green 660). This will be corrected in the scheduled reprocessing of the data.

A downward-looking Exotech 100BX Satellite Simulator was installed in the port wing of the Twin Otter. This simultaneously measures reflected radiation over four wavelength bands, and can be configured to simulate two modes of LandSat operation (MSS and TM), as well as the French satellite SPOT (three channels only). It has a faster response than the other radiometers discussed above, and considerable flexibility in terms of viewing angles and output signal voltage ranges. For SGP97, it was configured with a 15 deg field of view and a gain of 5 and was operated in the Landsat MSS mode for all flights.

Surface temperature was measured by a downward-looking Barnes PRT-5 infrared radiometer. The PRT-5 operates over one of three selectable temperature ranges. The range that was used in this experiment had an upper limit of 57 deg C.

2.7 Flux Calculations

The program used to generate the flux estimates and numerous summary files for archive purposes was called ARCPOK97_NEW, which was run on the MicroVax-alpha computer used in the field and at the FRL in Ottawa. The principal equations used to compute wind components and fluxes from Twin Otter data are given in Reference 4, and will not be repeated here.

Three sets of fluxes were computed for the sensible and latent heat, C0₂, ozone and momentum; these used (1) raw, (2) linearly detrended, and (3) high-pass filtered time series at 32 Hz. The high-pass filtering routine used a third-order algorithm with a breakpoint set at 0.005 Hz, which corresponded to a wavelength of approximately 11 km at the usual flight speed of the Twin Otter of about 55 ms⁻¹. Only the linearly detrended fluxes are presented in this report.

On the Twin Otter, there is a physical displacement between the primary sensor for the vertical gust velocity at the tip of the noseboom, and the other sensors providing data for the flux calculations. In using the eddy correlation technique to compute fluxes, the data must be adjusted for the transport time for a parcel of air to pass from the noseboom to the other sensors. This adjustment is particularly important for runs at low altitude, where the spacing of the sensors can become a significant fraction of the typical

turbulent eddy size.

By means of an optional input in the playback software, the vertical gust velocity can be lagged a selectable number of data intervals prior to being multiplied by fluctuations in temperature, CO₂, H₂O, and ozone signals to derive the fluxes. To verify the predicted time lags, data from low-altitude runs can be analyzed with a range of lags. The resulting computed correlation coefficients are then plotted versus lag, with the maximum of the curve defining the appropriate lag for use in the subsequent data analyses. Another benefit of this technique is that the lag derived is a combination of delays resulting from both the physical separation of the sensors and the differences in the response times of sensors. The lags used in the SGP97 field analysis are listed below:

Flux	Analyzer	Parameter (Table 2)	Lag 1/32 sec
Sensible Heat	Rosemount	pt_port,pt_stb	3
$C0_2$, H_20	ESRI	rC02_esri, rH20_esri	8
	LI-COR	rC02_licor, rH20_licor	23
H ₂ 0	Dew Point	rH20_dp	42
Ozone	LOZ-3	oz_loz	85
Momentum	Wind components	wind_nl, wind_el,wind_zl	0

3.0 EXPERIMENTAL SITES AND FLIGHT PATTERNS

In the first week of April, 1997, a flux aircraft flight planning meeting was held in Boulder, Colorado. The purpose of this meeting was to design flight plans, involving both the Twin Otter and Long-EZ, that would meet the objectives of the boundary layer component of SGP97. Working from aeronautical and land-use maps, candidate tracks were laid out that were within operational range of Oklahoma City, within the footprint of the ESTAR system on the NASA P-3, covered both rangeland and winter wheat, and were sufficiently extensive to cover the expected heterogeneity in soil moisture conditions. Since the flux aircraft were to be operated at low altitude (down to 100 feet) on these tracks, approval was sought from the Federal Aviation Administration in Oklahoma City. In early May, representatives from both the Long-EZ and Twin Otter flight crews flew these candidate tracks in a rented Cessna using a hand-held GPS to check their suitability for low-altitude flight. Several of the tracks were adjusted to avoid built-up areas, horse paddocks, etc., and the re-designed tracks were again submitted to the FAA. When SGP97 began on June 18, the track(s) chosen for a given flight were first flown at 500 feet, once again to check for conflicts. This led to some minor revisions to the navigation waypoints.

Figure 2 is a schematic diagram of the final tracks used by the flux aircraft aircrews in SGP97, along with a listing of the latitude and longitude of the waypoints used in the

aircrafts' GPS systems. The length of each track, in nautical miles (nm) and kilometers (km), is also indicated. Two of the lines used most often in the experiment were given names, by which they are known in the flight summary table (Table 6). The 'El Reno' line (RW-RE) was an east/west track 14.7 km in length that was the most frequently flown by the flux aircraft, principally because it overflew several of the flux tower systems operated in SGP97. The Twin Otter flew about half of its flux runs (202) on this track. The 'Kingfisher' line (ES-EN) was a north/south track 31.5 km in length that featured a significant discontinuity in vegetation at the Cimarron River, with mostly winter wheat in the southern 20 km, and rangeland in the 11.5 km north of the river. The winter wheat was harvested during the experiment, so that much of the land south of the river became ploughed. Another 61 of the Twin Otter's flux runs were flown on this track.

The east/west DW-DE track just north of the Kingfisher line proved to be a good contrast to the Kingfisher line, as it appeared to receive more rainfall. The Twin Otter made 34 flux runs on this track. The four tracks southwest of Oklahoma City, including the GW-GE and GS-GN tracks in the Little Washita watershed, proved to be unflyable by the Twin Otter at low altitude due to the number of buildings and cattle on the track. A few runs were done at 300 and 500 feet, and the Long-EZ made a significant number of runs on the GN-GS track on two flights. The GN waypoint was close to the NOAA flux tower.

The two long lines AS-AN and BS-BN were 108 km segments of two of the tracks flown by the ESTAR-equipped P-3 (their lines #2 and #3). These were flown on a few occasions. The southern half of the BS-BN was flown by the Twin Otter on two special flux budget investigations (Flights 21 and 23). The CS-CN line passed the ARM CART site, and was flown by the Twin Otter twice on Flight 05 and five times on Flight 17. This flight also featured 2 soundings at the CART site flown as an intercomparison with the tethersonde operated there, as well as 14 low-level passes of the University of Nebraska grassland flux tower located east of Ponca City.

4.0 SUMMARY OF FLIGHT OPERATIONS

The first Twin Otter flight for the SGP97 study was a test flight of 1.6 hours duration flown from Ottawa on June 11, 1997. This flight was primarily to test the wind and flux system, verify the position errors that apply to the pressure measurements, and check the operation of the laser and radio-altimeters. The aircraft departed for Oklahoma City on June 15, and arrived the next day after five flights and a total of 10.7 transit hours. SGP97 project flights began on June 18 and ended on July 17. A total of 27 project flights were flown, amounting to 82.8 flight hours. The return transit trip to Ottawa on July 18 and 19 again took 5 flights and 10.2 hours. A grand total of 38 flights and 105.3 flying hours were devoted to SGP97.

Table 3 presents a summary of all the flights. It lists the date, flight number, takeoff and landing GMT (local daylight time plus 5 hours), logged flight hours, a brief summary of weather conditions and boundary layer (BL) height, and the runs flown. Waypoints referred to in the last column are those given in Figure 2. Most of the flights were coordinated missions with the NOAA Long-EZ, either with both aircraft flying the same track at different altitudes (these are indicated as 2-plane missions in the right column of Table 3), or with the two aircraft working the same area sequentially. On most of these flights a formation intercomparison was flown by the two aircraft on one of the flux lines; these are indicated in bold in Table 3.

The flights referred to above could be considered the 'normal' flux flights of SGP97. In addition to these, there were some special studies flown. They are summarized below.

Date	Flight(s)	Description
July 02	13, 14	An all-day study to document growth and decay of boundary layer on the El Reno line. Long-EZ did first flight for morning transition, Twin Otter flew 09:30-13:47 local time, Long-EZ did 3rd flight in mid-afternoon, and the Twin Otter measured the evening transition, 18:03-20:35 CDT
July 05	17	Intercomparison with Long-EZ on BN-BS track, then Twin Otter flew the ARM-CART line, intercomp soundings against the tethersonde, and 14 runs past University of Nebraska grassland tower. Long-EZ did same in reverse order.
July 10	21	Advection/Budget study on south end of BS-BN line. Fluxes measured at 30 m and 0.8 Zi (height of mixed layer) in pattern advecting with the wind.
July 13	23	As above, with added runs on DW-DE line on completion of flux budget study.
July 14	24	Two runs on El Reno line with P-3 overflight, and four intercomparison runs on Kingfisher line with UND Citation.
July 16	25, 26	Late morning and evening transition flights on El Reno line; Long-EZ flew mid-afternoon flight.
July 17	27	Morning transition flight coordinated with Long-EZ and Citation, with P-3 overflights.

Figure 3 presents an example plot of the flight track for Flight 19, in which the Twin Otter worked the El Reno, Kingfisher and DE-DW lines. These types of plots are available for all 27 flights. The Twin Otter flew 101 soundings in SGP97, profiling the atmospheric wind and thermodynamic structure from about 30 m altitude to above the top of the mixed layer. Figure 4 is an example plot from one of these soundings from the evening transition flight on July 2.

Table 4 presents a flight-by-flight summary of the runs flown by the Twin Otter in SGP97 categorized by flux, intercomparison, soundings and other. The nearly 400 flux runs have been subdivided by altitude, showing that about half were flown at a nominal 100 ft altitude, and about another quarter were accomplished at 0.8 Zi, where Zi was the height of the top of the mixed layer.

Table 5 documents the Twin Otter instrumentation status throughout SGP97, with individual entries indicating instrumentation problems that may affect the quality of the data. This table should be consulted prior to working with the data from any given flight.

5.0 DATA SUMMARIES

Table 6 presents run-averaged flux and meteorological data for all of the Twin Otter flux runs in SGP97. These run-averaged data are from the initial in-field analysis, and therefore are to be treated as preliminary data. Similar tables will be produced when the data are reprocessed, after applying the final calibrations and the Kalman filtering to remove small biases in the wind measurements.

The fluxes and standard deviation values shown are those computed from linearly detrended data. These are considered to be the best estimates of the fluxes to date. The first page of this lengthy table serves as a legend for the column headings, explaining what data are shown in each column. Data on each table are grouped by the site flown, after which are presented two summary lines of data giving: (1) the averages for all the runs flown at that site, and (2) the Bowen Ratio and the standard deviation of the runto-run variations in the flux estimates.

Refer to Section 2.0 above, as well as Table 5, for cautions regarding individual parameters or inoperative sensors on specific flights. The parameters most likely to have significant changes on the data reprocessing are net radiation and greenness index (the latter principally for cloudy cases). It is likely that the sensible heat flux, and possibly the latent heat flux, are under-estimated in Table 6 for runs at 30 m altitude. The mean wind direction and speed, and the rms of the three orthogonal wind components are unlikely to change much in the reprocessing. The Kalman filtering procedure does not affect the vertical wind component.

6.0 EXAMPLE SPECIAL STUDIES

It is not the intention of this interim report to present second-level analyses using the preliminary data -- the final report will accomplish that with reprocessed data. However, preliminary results from a couple of interesting example studies will be the subject of this final section of the interim report.

Figure 5 depicts the Bowen Ratio (sensible heat flux divided by latent heat flux) measured by the Twin Otter on 35-m runs on the three tracks flown most often. The Kingfisher line shows a significantly different time history during the experiment, despite its position between the El Reno and DW-DE lines, with its center about 40 km from the centers of each of the other two lines. The 'weather' column in Table 3 indicates that the main rain events during the experiment occurred on June 28 (day 179), July 3 (day 184), and July 10 (day 191). These records are not complete, however, and since the precipitation occurred in thunderstorms, it was known to be patchy. The interesting observation from Figure 5 is that the Bowen ratio for the El Reno run remains well bounded between about 0.25 and 0.45, despite periods of significant drying. The Kingfisher line has a much larger response to the drying after day 185 than the other two lines. This may be due in part to the harvesting and ploughing of the fields with winter wheat; the Kingfisher line appeared to have a greater proportion of bare fields near the end of the experiment than the other two lines. Further study is required, with examination of the rainfall records along with the NASA P-3 ESTAR data. The aircraft video-tape can be used to derive the proportion of each vegetation species on each flux line.

Two of the Twin Otter flights (# 14 and 26) examined the evening transition of the boundary layer. Figure 6 shows the measured fluxes of sensible and latent heat and CO₂ for the 35-m runs plotted versus local daylight time (GMT-5). The plots show very similar results for the two days with a reversal of the sign of the sensible heat flux near 7 p.m., accompanied by a change in CO₂ flux from a net uptake by the surface to respiration. The sun set about 7 minutes earlier for Flight 26. These low-altitude runs are complemented by a number of runs on the same track at higher altitude (4 for Flight 14, 8 for Flight 26) and soundings (2 and 5 respectively). These data, along with measurements made by both flux aircraft earlier on each day, should form the basis of an interesting boundary layer study.

Approximately 25 percent of the flux runs flown by the Twin Otter in SGP97 were flown at an altitude close to 0.8 Zi, where Zi is the height of the top of the mixed layer. This represents the greatest number of such runs in any project flown to date by the Twin Otter. These runs provide considerable data with which to examine entrainment processes at the top of the mixed layer. Figure 7, for example, illustrates the time-histories of the vertical gust velocity, potential temperature fluctuation from the runmean, and water vapour mixing ratio for a Kingfisher run at 5000 feet on Flight 15. The large excursions in the bottom two traces represent incursions into the mixed layer of

warm, dry air from aloft. In this case, the computed fluxes of sensible and latent heat, using linearly detrended data, were -104 and +1307 W m⁻² respectively.

7.0 REFERENCES

Baldocchi, D. Wofsy, S. Fitzjarrald, D. McCaughey, H. Joiner, D. W.

1. Wei, M.-Y. Soil Moisture: Report of a Workshop Held in Tiburon, Ca., 25-27 January, 1994. NASA CP-3319, Washington, 76 pp.

2. Jackson, T. Southern Great Plains 1997 (SGP97) Hydrology Experiment Plan, Version 3/3/97, 131 pp.

3. Leach, B.W. Application of Kalman Filtering to Airborne Wind MacPherson, J.I. Measurement. Journal of Atmospheric and Oceanic Technology, Vol. 8, 51-65, 1991.

4. MacPherson, J.I. Wind and Flux Calculations on the NAE Twin Otter. NRC, NAE Laboratory Technical Report LTR-FR-109, National Research Council Canada, January, 1990.

5. Desjardins, R. L. Scaling Up Flux Measurements for the Boreal MacPherson, J. I. Forest Using Aircraft-Tower Combinations.

Mahrt, L. Journal of Geophysical Research, BOREAS Special Issue (in press).

Pattey, E. Neumann, H.

6. MacPherson, J.I. NRC Twin Otter Operations in BOREAS 1994.
National Research Council of Canada Report LTR-FR-129, 192 pp., April 1996.

7. Brach, E.J. Open Path CO₂ Analyzer.
Desjardins, R.L. J. Phys. Ed. Sci. Instrum., 14, 1415-1419, 1981.
St. Amour, G.T.

8. List, R.J. Smithsonian Meteorological Tables, 114, Smithsonian Institution, Washington, 1951.

TABLE 1: TWIN OTTER SENSORS FOR SGP97

Category	Instrument	Type ¹ Output	Parameter Labels	Description
Time	VME-167 computer	D	TIME	Recorded at millisec after midnight GMT
Position	Trimble GPS/VLF/Omega TNL-7880SR	D	LTD, LTM LGD, LGM	Latitude, degrees and minutes Longitude, degrees and minutes
	Litton 90-100 Inertial Reference System	D	LATL LONGL	Latitude, dec. degrees Longitude, dec. degrees
	NovaTel RT-20 GPS	D	LATN LONGN	Latitude, dec. degrees Longitude, dec. degrees
Inertial Velocity	Litton 90-100 Inertial Reference System	D	ULN,VLE,WZL GSL	3 Components of Velocity in Earth-axes Total Ground Speed
	Trimble GPS/VLF/Omega TNL-7880SR	D	UNGPS,VEGPS GS_GPS	Horizontal components of ground speed, Earth axes Total Ground Speed
	NovaTel RT-20 GPS	D	UNN,VEN,WZN GS_NOV	3 Components of Velocity in Earth axes Total Ground Speed
Heading	Sperry C-12 Gyro Compass	s	HDGM	Magnetic Heading True Heading (Uses Variation from GPS)
	Litton 90-100 IRS	D	HDGT HDGTL	True Heading
Attitudes	Kearfott T2109 Gyro	s	THETA, PHI	Pitch and Roll Attitude
	Litton 90-100 IRS	D	THETAL, PHIL	Pitch and Roll Attitudes
Acceler- ations	Systron-Donner 4211	A	AX,AY,AZ	Longitudinal, Lateral and Vertical Accelerations in Aircraft Axes
4(1012	Litton 90-100 IRS	D	AXL,AYL,AZL EAZL	Plus Vertical Acceleration in Earth Axes
Angular Rates	Smiths 402-RGA Rate Gyros	A	PRATE, QRATE	Roll, Pitch and Yaw Rates in Aircraft Axes
NUCCS	Litton 90-100 IRS	D	PRATEL, QRATE	
Altitude	Sperry AA-200 Radio Altimeter	A	RALT	Height Above Terrain, to 2500 ft
	Riegl LD-90-3 Laser Altimeter	A	LASALT	Fast response height above terrain; resolution and frequency response programmable (set for 200 m max BOREAS-1996)
Tempera-	Rosemount 102DJ1CG	A	TTF	Fast Response Total Temp., Port side of Nose
tures	Rosemount 102DJ1CG	A	TTNB	Fast Response Total Temp., Starboard Side of Nose
	Rosemount 102DJ1CG	A	TTDUCT	Fast Response Total Temp in Duct
	Barnes PRT-5	A	PRT5C	Surface Temperature
	E,G and G Model 137-S10	A	DEWPTC	Dew Point Temperature
	LICOR CO ₂ Analyzer Temp	A	LCTS	Temperature in LICOR used in calculation of $\ensuremath{ppm}\ \ensuremath{CO_2}$

TABLE 1 (Cont)

Category	Instrument	Type ¹ Output	Parameter Labels	Description
Pressures	Paroscientific 1015A-02 Rosemount 858AJ28 Probe	D	PSNB	Noseboom Static Pressure, temperature compensated
	Paroscientific 10030-02 Rosemount 858AJ28 Probe	D	PDNB	Noseboom Dynamic Pressure
	Paroscientific 1003D-02 Rosemount 858AJ28 Probe	D	PALPHA	Differential Pressure for Angle of Attack
	Paroscientific 1003D-02 Rosemount 858AJ28 Probe	D	PBETA	Differential Pressure for Angle of Sideslip
	Paroscientific 1015A-02	D	PSF	Alternate Static Pressure, Fuselage ports
	Rosemount 1221F1VL7A1B	A	PDF	Alternate Dynamic Pressure, Fuselage pitot
	Rosemount 1221F2VL7A1A	A	DPSDUCT	Pressure difference in duct between upstream and downstream of ${\rm CO_2}$ analyzer
	Rosemount 1201F1B4A1B	A	PSDUCT	Static Pressure in Duct upstream of ${\rm CO_2}$ analyzer
	Rosemount 1201F2A1A1B	A	PSL1COR	Static pressure in LICOR line
Analyzers	Agriculture Canada ESRI Gas Analyzer	D	CO2 H2O	Carbon Dioxide Concentration Water Vapour Concentration
	LICOR CO ₂ /H ₂ O Analyzer Model LI-6262	A	LC02 LH20	${\rm CO}_2$ concentration ${\rm H}_2{\rm O}$ concentration
	Scintrex Ozone Analyzer LOZ-3	A	LOZ3	Ozone concentration, ppb, full signal
	TECO Ozone Analyzer Model 49	A	TECO	Ozone concentration, ppb, full signal
Radiometer	s Kipp and Zonen CM-11	A	RADUP	Incident Shortwave Radiation, Top Fuselage
	Eppley Pyranometer	A	RADOWN	Reflected Shortwave Radiation, Under Fuselage
	Skye Industries Greennes	s A	GRN660 GRN730 GRNRAT	Vegetation Greenness Index, (IR/R) Downward-looking
	Skye Industries Greennes	s A	GRUP66 GRUP73 GREENU	Vegetation Greenness Index, (IR/R) Upward-looking
	Barnes PRT-5 radiometer	A	PRT5C	Surface temperature
	Exotech Inc. 100BX Satellite Simulator	A	SAT1,SAT2 SAT3,SAT4	Reflected radiation at four wavelengths to simulate SPOT or Landsat TM and MSS

¹ D- Digital S- Synchro A- Analog

TABLE 2: TWIN OTTER RECORDING BUFFER, SGP97

Name	Units	Description
date	-	Year * 10000 + Month * 100 + Day
time	ms	milli-seconds from midnight GMT (ie. Time * 1000)
event	bits	Event marker
leds	bits	Status of function switches, etc.
ps_nb	mb	Noseboom static pressure, uncorrected for position errors
pd_nb	mb	Noseboom dynamic pressure, uncorrected for position errors
p_alpha	mb	Noseboom angle of attack differential pressure
p_beta	mb	Noseboom angle of sideslip differential pressure
ps_fus	mb	Fuselage static pressure, uncorrected for position errors
psnbc	$\mathbf{m}\mathbf{b}$	Noseboom static pressure, corrected for position errors
pdnbc	mb	Noseboom dynamic pressure, corrected for position errors
psfc	mb	Fuselage static pressure, corrected for position errors
pdfc	mb	Fuselage dynamic pressure, corrected for position errors
pdfnb	mb	Dynamic pressure at noseboom calculated from fuselage dynamic pressure
heading	degT	Aircraft heading, C-12 compass, degrees true
pitch	deg	Pitch attitude from Kearfott gyro
roll	deg	Roll attitude from kearfott gyro
o3_teco	ppb	Ozone concentration, TECO slow-response reference unit
laser	m	Laser altimeter height above terrain
tt_port	deg C	Total temperature, port probe
tt_stb	deg C	Total temperature, starboard probe
pd_fus	mb	Fuselage dynamic pressure, uncorrected for position error
rad_alt	m	Radio-altimeter height above terrain
dew_point	deg C	Dew point temperature
p	deg/s	Aircraft roll rate from 3-axis gyro package
q	deg/s	Aircraft pitch rate from 3-axis gyro package
r	deg/s	Aircrast yaw rate from 3-axis gyro package
ax	m/s^2	Longitudinal acceleration, from 3-axis accelerometer package
ay	m/s^2	Lateral acceleration, from 3-axis accelerometer package
az	m/s^2	Vertical acceleration, from 3-axis accelerometer package
t_accel	bits	Temperature in accelerometer pack (ie. uncalibrated)
rad_up	W/m_2^2	Incident radiation
rad_down	W/m^2	Reflected radiation
prt5	deg C	Radiometric surface temperature
lco2	mv	LI-COR C02 raw signal, millivolts
ltemp	deg C	LI-COR temperature
lh2o	mv	LI-COR H20 raw signal
lps	mb	LI-COR pressure
ps_duct	mb	Duct static pressure, upstream of ESRI Analyzer
dps_duct	mb	Difference in duct pressure across ESRI C02 analyzer
g660_up	-	Greenness 660 signal, upward looking
g730_up	-	Greenness 730 signal, upward looking
g660_down	-	Greenness 660 signal, downward looking
g730_down	-	Greenness 730 signal, downward looking
o3_loz	ppb	Ozone concentration from LOZ-3 analyzer
sat_a	W/m^2	Satellite simulator, channel A
sat_b	W/m ²	Satellite simulator, channel B
sat_c	W/m^2	Satellite simulator, channel C
sat_d	W/m ²	Satellite simulator, channel D

Table 2 (cont) Recording Buffer

Name	Units	Description
tt_duct	deg C	Duct total temperature
elevator	deg	Elevator angle, positive trailing edge down
rudder	deg	Rudder angle, positive trailing edge left
lat_1	deg	Latitude from Litton IRS
lon_1	deg	Longitude from Litton IRS, west negative
gs_l	m/s	Ground speed from Litton IRS
track_1	degT	Ground track angle from Litton IRS
heading_l	degT	Aircraft true heading from Litton IRS
drift_l	deg	drift angle from Litton IRS
pitch_l	deg	Pitch attitude from Litton IRS, nose up positive
roll_l	deg	Roll angle from Litton IRS, right wing down positive
<u>p_l</u>	deg/s	Aircraft roll rate from Litton IRS, right wing down positive
q_l	deg/s	Aircraft pitch rate from Litton IRS, nose up positive
r_l	deg/s	Aircraft yaw rate from Litton IRS, nose right positive
ax_l	m/s^2	Longitudinal acceleration from Litton IRS
ay_l	m/s ²	Lateral acceleration from Litton IRS, positive to right
az_1	m/s ²	Vertical acceleration from Litton IRS, positive downwards
alt_l	m	Pressure altitude from Litton IRS
v_az	m/s^2	Vertical acceleration in earth axes, from Litton IRS
v_spd	m/s	Vertical speed in earth axes, from Litton IRS
ns_vel_l	m/s	Velocity to north from Litton IRS
ew_vel_l	m/s	Velocity to east from Litton IRS
lat_t	deg	Latitude from Trimble 7880 GPS
lon_t	deg	Longitude from Trimble 7880 GPS, west negative
gs_t	m/s	Ground speed from GPS
ns_vel_t	m/s	North velocity from GPS
ew_vel_t	m/s	East velocity from GPS
mag_var	deg	magnetic variation from GPS
xtrack	n. mile	Cross-track error from GPS
trk_err	deg	Track-angle error from GPS
date_t	-	Year * 10000 + Month * 100 + Day
time_t	ms	milli-seconds from midnight GMT (ie. Time * 1000)
balt_nb	m	Pressure altitude, using noseboom static pressure
balt_fus	m	Pressure altitude, using fuselage static pressure
ts_port	deg C	Static temperature, from port probe
ts_stb	deg C	Static temperature, from starboard probe
ts_duct	deg C	Static temperature in duct
pt_port	deg K	Potential temperature, from port probe
pt_stb	deg K	Potential temperature, from starboard probe
tas_nb	m/s	True airspeed, noseboom
tas_fus	m/s	True airspeed, fuselage ports
tas_duct	m/s	True airspeed in duct
alpha	deg	Aircraft angle of attack, corrected for upwash
beta	deg	Aircraft sideslip angle, corrected, positive sideslip right
alpha_l	deg	Aircraft angle of attack, derived from Litton IRS data
wind_nl	m/s	Wind component from north, primary system
wind_el	m/s	Wind component from east, primary system
wind_zl	m/s	Vertical wind component, primary system, positive up
wdir_l	degT	Wind direction, primary system
wspd_1	m/s	Wind speed, primary system
		aband baman alasam

Table 2 (cont) Recording Buffer

Name	Units	Description
uair_l	m/s	North true airspeed component corrected to Litton IRS location
vair_l	m/s	East true airspeed component corrected to Litton IRS location
wair_l	m/s	Vertical true airspeed component corrected to Litton IRS location, positive aircraft down
wind_ng	m/s	Wind component from north, backup GPS system
wind_eg	m/s	Wind component from east, backup GPS system
wind_zc	m/s	Vertical wind component, backup complementary filtered system
wdir_g	deg	Wind direction, backup GPS system
wspd_g	m/s	Wind Speed, backup GPS system
uair_g	m/s	North true airspeed component corrected to accel. location, backup
vair_g	m/s	East true airspeed component corrected to accel. location, backup
wair_c	m/s	Vertical airspeed component corrected to accel. location, backup
wepf	m/s	Vertical wind component, high pass filtered
w_palt	m/s	Low-frequency vertical velocity derived from pressure altitude
vel_z	m/s	Aircraft vertical velocity, derived from backup system
g_index	-	Greenness index, downward-looking device
eddy	bits	Eddy accumulation signal (up, down and dead-band)
density_nb	kg/m ³	Air density, uses noseboom pressures
density_duct	kg/m ³	Density in duct at ESRI analyzer location
dry_density	kg/m ³	Density of dry-air component in duct
co2_esri	mg/m ³	ESRI CO ₂ concentration
rco2_esri	mg/kg	ESRI $C0_2$ mixing ratio, mg $C0_2$ per kg dry air
h2o_esri	g/m ³	ESRI H ₂ 0 concentration
rh2o_esri	g/kg	ESRI H ₂ 0 mixing ratio, g H ₂ 0 per kg dry air
rh2o_dp	g/kg	H ₂ 0 mixing ratio, derived from dew point temperature
co2_licor	mg/m ³	LI-COR CO ₂ concentration
lco2_ppm	ppm	LI-COR $C0_2$ concentration in ppm
rco2_licor	mg/kg	LI-COR $C0_2$ mixing ratio, mg $C0_2$ per kg dry air
h2o_licor	g/m ³	LI-COR H ₂ 0 concentration
lh2o_ppt	ppt	LI-COR H ₂ 0 concentration in parts per thousand
rh2o_licor	g/kg	LI-COR H_2^0 mixing ratio in g H_2^0 per kg dry air
terrain	m	Terrain height above sea level
net_rad	W/m^2	Net radiation
novlat	deg	Latitude from NovaTel GPS
novion	deg	Longitude from NovaTel GPS
nov_hgt	m	Height above sea level from NovaTel GPS
nov_gs	m/s	Ground speed from NovaTel GPS
nov_trk	degT	Track angle from Novatel GPS
nov_vz	m/s	Vertical velocity from NovaTel GPS

TABLE 3: FLIGHT SUMMARY - Southern Great Plains, 1997

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
Jun 11 T1	1430-1552 1.6	warm, some cloud, smoke from forest fires, Altimeter 29.90/29.88	 4 reciprocal runs for wind check, 5500' Control inputs, 3 events 4 runs on Larose forest at 500, 100, 300 and 300' Descent over Lac Deschenes to check Radalt and laser altimeter Acceleration/Deceleration over Lac Deschenes to check position errors, airspeeds
June 15 Tr-1 Tr-2 Tr-3	1.2 2.2 2.5		Transit, Ottawa- SyracuseTransit, Syracuse - AkronTransit, Akron - Terre Haute
June 16 Tr-4 Tr-5	2.6 2.2		- Transit, Terre Haute - Lebanon - Transit, Lebanon - Oklahoma City
June 18 01	1552-1716 1.6	Clear, warm, southwest winds, Altimeter 30.02/30.01 BL 2700' msl at 1614 Z, BL 3800' msl at 1648 Z,	- El Reno line - Sounding 6500' msl - 300' agl - Flux run, 500', RE-RW (extended east) - Flux run 150 ', RW-RE (") Litton fails - 2 runs at about 0.8 Zi, 3300 and 3100' msl
June 19 02	1505-1806 3.2	Clear, hot, SSW wind 15 mps, Altimeter 29.98, BL 1900' agl at 1525 Z BL 2000' agl at 1535 Z BL 2300' agl at 1610 Z BL 2600' agl at 1638 Z BL 2700' agl at 1740 Z	- El Reno, new line - Sounding 4500'msl to 100' agl - Intercomp with Long-EZ, 500' - 4 runs at 0.8 Zi, 1550' agl - Sounding 4000' msl to 100' agl - 4 runs at 100' - Sounding 100' agl to 5000'msl - 2 runs at 0.8 Zi, 2100' agl - 4 runs at 0.5 Zi, 1300' agl - 1 run at 0.8 Zi, 2100' agl - Sounding, 5000'msl to 100' agl - Intercomparison with Long -EZ, 500'
June 20 03	1507-1749 2.9	Clear, hot with more humidity than previous day, Winds SSW 10 mps, BL hard to determine in flight, but 1500-1700' agl from plots, Altimeter 29.83	- El Reno line again - Sounding 5500' msl to 100' agl - 8 runs at 100' - 3 runs at 1300' agl, middle run an intercomparison with Long-EZ - Sounding 100' agl to 5500' msl - 6 runs near 0.8 Zi, first at 3500' msl, next five at 3200' msl - Sounding 5500' msl to 100' agl

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
June 20 04	1913-2224 3.4	Clear, hot, humidity drops a lot to the north, windy and turbulent, Altimeter 29.81/29.76	- AS-AN track - Sounding near AS, from 6500' msl - AS-AN scouting run, three events, 800'agl - AN-AS, three events, 800' agl - 4 runs on southern 30 miles of AS-AN track, 600'; northbound runs a single event, southbound runs split in two events Sounding near AS, 5500' msl
June 21 05	1704-2000 3.1	Hot, strong southerly wind, some cumulus, haze, humid Altimeter 29.88	 Recce flight with flux measurement BS-BN, split event, 500' agl Two passes on CART track, CN-CS, CS-CN, 500' BN-BS, first 30 miles in two events, 500' DW-DE and DE-DW, 500' Southern 1/2 of BN-BS in two events, 500'
June 22 06	1459-1812 3.4	Cooler, mostly overcast near edge of large complex in Texas, Winds SSE 9 mps, Altimeter 30.08	- Recce flight with fluxes - 2 passes on GN-GS line, 500' and 150' - GE-GW at 500' - FW-FE at 500' - FS-FN at 500' - 2 passes on ES-EN, 500' and 100' - EW-EE at 500' - EE-EW at 500', offset 0.3 n miles north - 4 passes on El Reno line, 100' - Sounding, 100' agl to 5500' msl
June 24 07	1519-1829 3.4	Warmer, some cloud at start, but clearing, very windy, 10-15 mps at 100', 20-25 at top of BL, Altimeter 29.98/29.96, BL 4100' msl at 1540 Z BL 4100' msl at 1548 Z BL 4200' msl at 1610 Z BL 4700' msl at 1640 Z BL 4100' msl at 1718 Z (?) BL 4700' msl at 1813	- Plan E, 2 aircraft, El Reno - 2 soundings at east end, 5500' msl to 100' agl, and climb back to 4500' msl) - One run at 0.8 Zi, westbound, 3500' msl - 2 runs at 100' agl, - Sounding at west end, 100' to 4500' msl - 2 runs at 0.8 Zi, 3600' msl - 2 runs at 100' agl - Sounding, 100' agl to 5300' msl, west end - 2 runs at 0.8 Zi, 4000' msl - 2 runs at 100' agl - Sounding 100' agl to 5500' msl at west end - 2 runs at 0.8 Zi, 4100' msl - 2 runs at 100' agl (2nd one with Long-EZ, intercomp - one run at 0.8 Zi, 4100' msl (with Long-EZ in formation, intercomp) - Climb to above BL, evented, 4100- 5600' msl

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
June 25 08	1347-1640 3.0	High broken overcast and light winds, gradual clearing during study, BL higher to east probably, Altimeter 30.03/30.06, BL 1600' agl at 1400 Z BL 3800' msl at 1515 Z BL 3800' msl at 1538 Z	- El Reno, early 2 plane - Sounding east end 4000' msl to 100' agl - One run at 0.8 Zi, 1300' agl - 2 runs at 100' agl - Sounding at west end, to 4000' msl - 2 runs at 0.8 Zi, 1300' agl - one run at 100' (computer failure near end) TAPE 2 - one run 100' - one run 0.8 Zi, 1300' agl - Sounding at east end, 100' agl to 5500' - one run at 0.8 Zi, 3300' msl - 2 runs at 100' agl - Sounding at west end, 100' agl to 4500' msl - 2 runs at 0.8 Zi, 3300' msl - 2 runs at 100' agl - one run at 0.8 Zi, 3300' msl - 2 runs at 100' (Consider intercomparison with Long-Ez; first run 3 miles behind Long-EZ, 2nd joining with Long-EZ) - Sounding to 5500' - Pitches and Yaws at 5500'
June 27 09	1543-1850 3.3	Clear at start with some light Cirrus, cumulus developing near end of flight based 5700', winds 210/13 kts, 30/22 at takeoff, Altimeter 30.07/30.06, BL 3300' msl at 1557 Z BL 4000' msl at 1635 Z	 El Reno and Kingfisher Sounding to El reno, 5500' msl to 100' agl 6 runs at El Reno, 100', clear Climb sounding enroute to RE-ES, to 4500' Descent sounding near ES, 4500' to 100' 3 runs on Kingfisher line, ES-EN, 100' Sounding near EN, 100' to 6000' 3 runs on Kingfisher line, ES-EN, 100' Climb sounding enroute ES-RE, 100' agl to 6000' msl (cloud based 5700' 6 Runs at El Reno, 100', some cloud,
Jun 29 10	1254-1615 3.5	Clear and humid at start, 23/22, winds light then increasing at site, Good inversion, BL rising from about 1100' agl to about 2000' agl, Some mid cloud gives shadows in middle of experiment, then disappear, El Reno area has standing water due to 2-3 inches rain previous day, Altimeter 29.87/29.88	- Plan E, El Reno - Sounding east end, 4500' msl to 100' agl - Sounding east end, 100' agl to 3000' - one run at 0.8 Zi, west, 900' agl - two runs at 100' - Sounding at west end, 100' agl to 3000' msl - two runs at 0.8 Zi, 900' agl - 2 runs at 100' agl - one run at 0.8 Zi, 900' - restart pattern, Sounding east end 4000' to 100' agl - one run at 0.8 Zi, west, 1100' agl - one run eastbound at 100' tape fails,unrecorded runs in brackets - (one run westbound at 100') - (Sounding west end 100' agl to 4000' msl) - (two runs at 0.8 Zi, 1100' agl)

RUNS FLOWN

10 (cont)

- (two runs at 100')
- (start run 0.8 Zi), abort due to discovery of tape failure: restart computer, new tape -----
- TAPE 2
- one run eastbound at 0.8 Zi, 1100' agl
- restart pattern again, Sounding at east end, 4000' to 100' agl
- one run at 0.8 Zi, westbound, 1100' agl
- 2 runs at 100' agl
- Sounding at west end, 100' agl to 4000' msl
- two runs at 0.8 Zi, 1400' agl
- two runs at 100'
- one run at 1100' agl (accidently flown too low

Jun 30 11 1610-1948 3.8 Clear s

Clear skies after major Cb passed north last night, wetting DW-DE more than Kingfisher line, warm and humid, winds south 20 kts, BL rose from 3500' msl to 4400' msl, Altimeter 29.95/29.92

- Kingfisher and DW-DE lines in tandem with Long -EZ
- Sounding near ES, 5500' msl to 100' agl
- 2 runs on ES-EN line, 100', alone
- 3 runs at 600', LE at 100' agl
- 4 runs at 100', LE at 600' agl
- Sounding with long-EZ enroute to DW, 100' agl to 5000' msl
- Descent sounding with Long-EZ near DW, 5000' msl to 600' agl
- 3 runs on DW-DE track, 600', LE at 100'
- 3 runs on same track at 100', LE at 600'
- Sounding with Long-EZ 400' to 5000'
- Intercomp with LE, EN-ES at 600 ft (Note, altitude not stable at start, skip first 2 minutes in intercomp analysis).

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
Jul 01 12	1603-1934 3.7	Clear and hot, Winds SSW 20 kt, BL 3800-4200' msl, Above mixed layer was dry with high ozone, Altimeter 29.87/29.86	- Worked DW-DE line while Long-EZ did Kingfisher line - Sounding enroute to ES, 4500' msl to 100' agl - one run on Kingfisher line, north, 100' - Climb sounding EN-DW, 100' agl to 4500' msl - Descent sounding at DW, 4500' to 100' agl - one run eastbound, DW-DE, 100, incomplete due to computer failure. TAPE 2 - one run westbound, DE-DW, 100' - one aborted run - 2 runs at 0.5 Zi, 2500' msl - 4 runs at 0.8 Zi, 3600' msl - 2 runs at 100' agl - Sounding enroute DW-EN, 100' agl to 5000' msl - one run Kingfisher, EN-ES, 100' - Sounding south of ES, 100' agl to 5000' (LICOR into calibrate near top)
Jul 02 13	1430-1747 3.5	Clear, hot, light winds SSW becoming westerly, double boundary layer, upper from 3600 to 4400' msl during flight, Altimeter 29.95	- The 2-plane, 4 fight all day study at El Reno - Sounding 5500' msl to 100' agl - 2 runs at 100' - 2 runs at 100' - 2 runs at 0.8 Zi, 2600' msl - Sounding at east end, 5500' to 100' - 2 runs at 100' - 1 run at 3200', offset 0.3 n mile south for footprint study - 1 run at 3200', offset 0.6 n mile - 2 runs at 100' - Sounding at east end, 100' agl to 5500' msl

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
Jul 02 14	2303-0135 2.7	Clear, hot, winds SSW at 10 knots, Altimeter 29.90/29.88, BL 7200' msl at 2316 Z BL 8200' msl at 0025 Z	- 4 th flight of day at El Reno; Evening Transition - Sounding 7500' msl to 100' agl - 2 runs at 100' TAPE 2 - 2 runs at 0.8 Zi, 6000' msl - pop-up sounding, 6000 to 8000' msl - 4 runs at 100' - Sounding at east end, 100' to 8500' msl - 2 runs at 0.8 Zi, 6900' - 4 runs at 100'
Jul 03 15	1558-1855 3.2	Clear with a few very small StrCu at top of heavy haze layer, Hot, 32/22 on takeoff, Winds SW 15 kt, Altimeter 29.95/29.92, BL 4600' msl at 1612 Z BL 5900' msl at 1710 Z BL 5900' msl at 1800 Z BL 6000' msl at 1840 Z	- Kingfisher and DW-DE study - Sounding to ES, 5500' msl to 100' agl - 2 runs ES-EN line, 100' - 2 runs at 0.8 Zi, 3800'msl - 1 run at 100' northbound - Sounding EN-DW, 100' to 6000' msl - 2 runs on DW-DE tracks at 5000' msl - 2 runs at 100' - Sounding enroute DW-EN, 100' to 6500' msl - 2 runs Kingfisher line, 5000' - 1 run southbound, 100' - Sounding south of ES, 100' to 6300' msl
Jul 04 16	1822-2123 3.2	Clear after passage of cold front and thunderstorms overnight, Winds NNE 10 knots, Cooler and dry, 24/14, Altimeter 30.17/30.14: rapid boundary layer growth; 5100' msl at 1835 Z 5900' msl at 1925 Z 6300' msl at 1950 Z 6500' msl at 2015 Z	- Kingfisher with Long-EZ, and El Reno - Sounding to ES, 5500' msl to 100' agl - 2 runs Kingfisher, 100' - 2 runs at 0.8 Zi, 4200' msl - Sounding at ES, 6500' msl to 100' agl - 2 runs at 100' agl - Sounding at ES, 100' to 6500' msl - 2 runs at 0.8 Zi, 5300' msl - 2 runs at 100' - Sounding enroute ES-RE, 100' to 6500' msl - 4 runs at El Reno, 100'

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
Jul 05 17	1559-1909 3.4	Clear in area worked with very few small StrCu, winds SSE 9 kts, Altimeter 30.17 Boundary layer 4300' msl at 1635 Z 5600' msl at 1745 Z	- ARM CART line and Verma Grassland - Intercomp with Long-EZ, part of BN-BS at 500' - CS-CN line at 100', northbound - Sounding around tethersonde, 4500' msl to 100' agl - 4 more lines on CN-CS track, 100' - Another sounding around tethersonde, 100' to 6000' msl - 14 lines past VERMA grassland site, first 5 at various directions, last 9 on east/west line, 100'; no event on first E/W line - one run over large area of uniform grassland - Partial sounding enroute to Ponca City
Jul 05 18	2027-2105 0.8	Mostly clear, some high cloud near OKC, smoke from burning fields. Altimeter 30.18/30.09 BL top approx 6500' msl	 Ponca City to Oklahoma City One event in smoke plume from burning fields gentle pitches and yaws, no event
Jul 08 19	1555-1907 3.4	Clear for most of flight, some high cloud on some DW-DE runs, warm, Winds SSW 11-15 knots, Cumulus just starting at end of flight, Altimeter 30.05/30.05 Boundary Layer 3200' msl at 1610 Z 4600' msl at 1640 Z 5400' msl at 1750 Z 5300' msl at 1830 Z	 Kingfisher, DW-DE and El Reno Sounding to ES, 6000' msl to 100' agl 3 runs on Kingfisher line, 100' Sounding EN-DW, 100' to 5000' msl 6 runs at 100' agl on DW-DE line (some shade on at least first 4 lines) Sounding DW-EN, 100' to 6000' msl 3 runs on Kingfisher line, 100' Sounding ES-RE, 100' to 6000' msl 4 runs at 100' on El Reno line (Note; first two right after Long-EZ, Intercomparison on third run); last run just ahead of Long-EZ
Jul 09 20	1602-1845 2.9	Clear at start, cumulus building to about 30 percent, Winds SSW 12-15 knots, Altimeter 30.06/30.04 Boundary Layer 3200' msl at 1620 Z 4200' msl at 1720 Z 4100' msl at 1740 Z	 Washita GE-GW, and FW-FE lines Sounding to GE, 6500' msl to 500' agl 3 runs on GE-GW line, 500' agl 3 runs at 300' agl 2 runs at 500' agl Sounding GE-FW, 500' agl to 5500' msl 2 runs on FW-FE line, 500' 2 runs at 300' agl 1 run at 500' agl

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
Jul 10 21	1510-1722 2.4	Clear at start, but TCu and showers developing, Wind SSW 15 knots, Altimeter 30.03 Boundary Layer 3250' msl at 1525 Z, south 3700' msl at 1545 Z, north 3700' msl at 1600 Z, south 3900' msl at 1615 Z, north 3800' msl at 1630 Z, south 4600' msl at 1645 Z, north	- Advection/Budget Study, paperclip flight plan, on line BS-BN - Sounding at BS (0 DME), 5500' msl to 100' - Aborted run, GPS in error - Run north, 0 to 16 n miles DME, 100' - Sounding at 16 DME from BS, 100' to 4300' msl - Run south at 0.8 Zi, 3200' msl, 16-5 DME - Sounding at 5 miles from BS, 4400' msl to 100' - Run north, 5 to 21 miles from BS, 100' - Sounding at 21 miles from BS, 100' to 4500' - Run south at 0.8 Zi, 3400' msl, 24 to 12 miles from BS (divert around shower) - Sounding at 17 miles from BS, 5000' msl to 100' agl (pattern moved north 5 miles) - Run north, 20-36 miles from BS, 100' agl - Sounding at 36 miles from BS, 100' to 5500' msl - Run south at 0.8 Zi, 4000' msl, 36 to 25 miles from BS
Jul 12 22	1502-1822 3.5	Clear, winds south at 20, Altimeter 30.07/30.07 Heavy rains in parts of project area night of July 10; only 0.1 inch at Kingfisher, Boundary layer relatively constant, and moist aloft 2900' msl at 1512 Z 3600' msl at 1524 Z 3700' msl at 1550 Z 3800' msl at 1610 Z 4500' msl at 1750 Z Log- EZ at DW-DE)	- Kingfisher and El Reno with P-3 LASE overflights - Sounding to ES, 5000' msl to 100' agl - Kingfisher, ES-EN 100' - Sounding 100' agl to 4500' msl, north end - 2 runs at 0.8 Zi, 3100' msl - Pop up sounding to check top of BL, 3100-4000' msl - 2 runs at 100' agl - Sounding at north end, 100' to 4500' - Run south at 0.8 Zi, 3200' msl El Reno, with P-3 overpass - 2 runs at 0.8 Zi, 3100', Long-EZ below at 100', P-3 above - Pop-up sounding 3100-4500' msl - 4 runs at 100' agl - Sounding 100'agl to 5000' msl - 2 runs at 0.8 Zi, 3500' msl - 4 runs at 100' agl - Kingfisher, 1 run at 100' agl northbound - direct return after bird-strike, ran event at 3000' msl

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
Jul 13 23	1554-1851 3.1	Clear, hot, winds SSW at 20 knots, Altimeter 30.00/29.98 Boundary Layer 3600' msl at 1604 Z 3600' msl at 1625 Z 3700' msl at 1635 Z 4000' msl at 1645 Z 4200' msl at 1655 Z 4000' msl at 1715 Z 3800' msl at 1730 Z 4100' msl at 1825 Z	- Advection/Budget flight on BS-BN track plus DW-DE; P-3 overflies line 3 - Sounding to BS, 5500 ' msl to 100' agl - Run at 100', from BS to 16 mile point - Sounding at 16 DME, 100' to 4100' - Inbound run at 0.8 Zi, 3200' msl, from 16 to 6 mile point from BS - Sounding a t6 mile point, 4200' msl to 100' - Run at 100' from 6 to 22 mile points - Sounding at 22 mile DME, 100 to 4500' msl - Inbound run at 0.8 Zi, 3500', from 22 to 12 mile point - Sounding at 12 mile point, 4600' msl to 100' - Run at 100' from 13-29 miles from BS - Sounding at 29 miles DME, 100' to 4500' msl - Inbound run at 0.8 Zi, 3400 ' msl, from 29 to 18 mile point from BS - Sounding at 18 mile point, 4700' msl to 100' - Run at 100 ' from 18 to 34 miles from BS DW-DE Study - Four runs on DW-DE line at 100' - Sounding enroute to Oklahoma City, 100' agl to 7500' msl
Jul 14 24	1540-1833 3.1	Front nearby, some TCu in area, Winds light, westerly in the south, northeast north of Kingfisher, hot, Altimeter 30.04/30.03 Boundary Layer 3000' msl at 1555 Z 3200' msl at 1625 Z 4000' msl at 1755 Z	- El Reno with P-3, plus intercomparison with North Dakota Citation; LICOR inlet test - Intercomparison sounding with Long-EZ, near RE from 5500' msl to 100' agl - 2 runs at 0.8 Zi at El Reno, 2700' msl (P3 passage) - 2 runs at 100' - Sounding at east end, 100' msl to 4000' - 2 runs at 0.8 Zi, 2900' msl Intercomp with Citation - 4 runs on original Kingfisher line, 2500' msl, first two with Citation overtaking Otter, last two in formation at 130 kts (wind shift) - Sounding to RE at El reno, 6500' msl to 100' agl - 2 runs at El Reno, 100' LICOR inlet switched to separate roof intake - 2 runs at El Reno, 100'

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
Jul 16 25	1555-1844 3.0	Clouds to the northwest dissipated during flight, Winds south at 10 knots, hot, 31/19 at takeoff, Altimeter 30.10/30.07 Boundary Layer top 2800' msl at 1605 Z 3400' msl at 1630 Z 3600' msl at 1710 Z 3500' msl at 1720 Z 3900' msl at 1750 Z 3700' msl at 1830 Z	- Kingfisher and El Reno - Sounding to ES, 5500' msl to 100' agl - 2 runs on Kingfisher line, 100' - Sounding at ES, 100' agl to 4000' msl - 2 runs at 0.8 Zi, 3000' msl - 2 runs at 100' - Sounding south of ES, 100' agl to 4500' msl El Reno - 2 runs at 0.8 Zi, 3100' msl - 4 runs at 100' - Sounding at RE, 100' agl to 4500' msl - 2 runs at 0.8 Zi, 3400' msl - 4 runs at 100' - Sounding east of RE, 100' agl to 5000' msl - Pitches and Yaws
July 16 26	2247-0147 3.2	Clear and hazy, Boundary Layer top hard to determine in flight, Altimeter 29.99/29.97	- Evening transition at El Reno - Sounding, 6500' to 100' agl - 2 runs at 100' - Sounding to 6500' msl - 2 runs at 4800' msl - 2 runs at 100' agl - Sounding to 6000' msl - 2 runs at 3500' msl - 2 runs at 100' agl - Sounding - 2 runs at 3000' msl - Aborted run at 100', tape error detected Tape 2 - 2 runs at 100' agl - Sounding to 4000' msl - 2 runs at 2400' msl - 2 runs at 100' agl - Sounding to 3500' msl
July 17 27	1244-1538 3.1	Broken cloud after large storm to north, some clearing in operational area, wet to north, Winds ESE at 15-20 knots, Altimeter 30.00/29.98 BL Top 2100' msl at 1255 Z 3300' msl at 1525 Z	- Morning transition study coordinated with Long-EZ and Citation, P-3 LASE above - Sounding to AS, 4500' msl to 100' agl - 2 runs at 500' agl 20 miles along AS-AN - 2 runs at 100' agl - 1 run at 500' northbound - 1 run southbound at 500', event is split (investigate possible problem on Long-EZ) - 2 runs at 100' agl - 2 runs at 500' (shortened at north end due to rain) - 2 runs at 100', AS to Cimarron River - Sounding enroute, south of AS, 100' agl to 5500' msl

DATE FLT	GMT HRS	WEATHER	RUNS FLOWN
July 18 Tr-6	2.2		- Oklahoma City to Lebanon
Tr-7	2.2		- Lebanon to Terre Haute
July 19 Tr-8	2.2		- Terre Haute to Akron
Tr-9	2.2		- Akron to Syracuse
Tr-10	1.4		- Syracuse to Ottawa

	Test	Transit Project		Total
Flights	1	10	27	38
Hours	1.6	20.9	82.8	105.3

TABLE 4: RUNS FLOWN BY TYPE - SGP97

* number of runs of each type

	<u> </u>	ol each t		Duna	- 	Inton	omp ¹	Other	Sound
Date	Flt	400	Flux	Runs	04	Interd		Oulei	Somin
1997		100- 150'	500- 600'	0.8 Zi	Other Alts	LE	Cit		
June 18	01	1	1	2					1
June 19	02	4	2	7	4	2	;		4
June 20	03	8		6	3	1			3
June 20	04				10				2
June 21	05		10						
June 22	06	6	7						11
June 24	07	8		8		2		<u> </u>	6
June 25	08	10		8		2		2	5
June 27	09	18							5
June 29	10	9		9	1				6
June 30	11	9	7			4			4
July 01	12	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4	4				5
July 02	13	12		12					4
July 02	14	10		4					2
July 03	15	6		6					4
July 04	16	10		4					4
July 05	17	20	1			1			3
July 05	18				1				
July 08	19	16				1			4
July 09	20		8		5				2
July 10	21	3		3					6
July 12	22	12		7	1				6
July 13	23	8		3					8
July 14	24	6		4		1	4		_ 3
July 16	25	12		6				2	5
July 16	26	10		8					6
July 17	27	6	6						2
		210	42	101	29	14	4	4	101

^{1 -} Intercomparison runs (with NOAA Long-EZ and UND Citation) will also appear in Flux Runs column when intercomparison done of a flux run

TABLE 5: TWIN OTTER INSTRUMENTATION STATUS - SGP 1997

All Flights

- RADUP and RADOWN not calibrated until after Flight 08: calibration NOT reliable; must be redone and corrections applied to whole dataset: After Flight 08, reversion to original calibration gives better results. Correction equation will be applied on data re-calculation in fall 1997.
- Novatel switched to 10 Hz for velocities after Flight 07
- Green 660 underreads by approx 0.6: appears June 17 calibration not correct; Must be redone
- PDNBC had 0.2 positive bias added (instead of subtracted) until Flight 20, when entire bias was

Date Flight Instrument Status Jun 18 01 - Novatel not recorded - Radio altimeter failed - Litton IRS circuit breaker popped at approximetely 1628, about 1/3 way into Run 03; remains inaccurate remainder of flight; must use backup wind system Runs 3-5, but not the ground calculated ones since there is a start-up problem--use the airborne computed ones direct from tape - RADUP and RADOWN not recently calibrated (apply correction). - No VHF event marker, so dew point had large dropouts on radio transmissions - Spikes on PS_LICOR affect mixing ratio for L_C02 - RADUP and RADOWN not recently calibrated.(apply correction) Jun 19 02 - No VHF event marker, so dew point had large dropouts on radio transmissions - Long-EZ time 6 seconds ahead of Twin Otter - Spikes on PS_LICOR affect mixing ratio for L_C02 - RADUP and RADOWN not recently calibrated.(apply correction) Jun 20 03 - No VHF event marker, so dew point had large dropouts on radio transmissions - LICOR fluxes considerably lower than ESRI fluxes as low altitude; checked lag and it has increased to 23, and differs between C02 and H20. Also PSNBC-PSLICOR averaging 50 mb, 20 larger than 1996 - Radio-altimeter not turned on until one minute after takeoff - Greenness not turned on until after Run 1, sounding - Spikes on PS LICOR affect mixing ratio for L_C02 - RADUP and RADOWN not recently calibrated.(apply correction) Jun 20 04

- No VHF event marker, so dew point had large dropouts on radio transmissions
- Spikes on PS_LICOR affect mixing ratio for L_C02
- Jun 21 05
- ESRI C02/H20 analyzer failed at 1751 Z
- Tape has some kind of a problem at 1935 Z (middle of last run); Haven't been able to read past this time.
- RADUP and RADOWN not recently calibrated.(apply correction)
- No VHF event marker, so dew point had large dropouts on radio transmissions
- Spikes on PS_LICOR affect mixing ratio for L_C02
- Jun 22 06
- RADUP and RADOWN not recently calibrated.(apply correction)
- No VHF event marker, so dew point had large dropouts on radio transmissions
- Spikes on PS_LICOR affect mixing ratio for L_C02
- LICOR H20 calibrated and adjusted prior to this flight; reading 4 percent low prior to this flight

- Jun 24 07
- First flight with Novatel velocities updated at 10 Hz
- ESRI analyzer failed at 1600 Z near end of Run 04
- LOZ3 failed at 1556 Z after Run 3
- Upward Greenness inoperative throughout flight; dead battery
- RADUP and RADOWN not recently calibrated.(apply correction).
- No VHF event marker, so dew point had large dropouts on radio transmissions
- Spikes on PS_LICOR affect mixing ratio for L_C02
- Jun 25 08
- Computer quit at approximately 1446 Z during Run 08; restarted computer at 1451 Z; 2 tapes for this flight
- ESRI analyzer failed prior to takeoff
- RADUP and RADOWN not recently calibrated.(apply correction)
- No VHF event marker, so dew point had large dropouts on radio transmissions
- Spikes on PS_LICOR affect mixing ratio for L_C02
- Greenness index going far too high, a result of GRN660 down reading near zero when overcast; Although recalibrated here in Oklahoma, calibration suspect.
- No voice on VHS tape
- Jun 27 09
- New Calibrations in airborne program for RADUP and RADOWN. RADUP read very high in last set of runs at El Reno, probably due to cumulus clouds, as we have seen in AES experiments: RADUP appears too high.
- New transducer installed for PS LICOR
- ESRI analyzer not used
- LOZ3 ozone analyzer fails, liquid problem, possibly a result of soundings
- No voice on VHS tape
- Jun 29 10
- Tape failure at 141850: Two tapes this flight; data lost for Runs 15-20 plus aborted Run 21
- ESRI analyzer operated on this flight; Signicant jumps to preferred levels in C02 signal, especially Run 29
- LOZ-3 quit after takeoff, but re-set and ran successfully.
- Transmit event only worked on VHF1
- Greenness Index overreads when clouds reduce GRD660 to near zero.
- LICOR may not have been warmed up at start, as first calibration shows underreading, as does first couple of soundings
- LICOR H20 fluxes appear low, especially at start: a lag study indicates that a lag of 27 should be used for H20, but onoy 22 for C02. Also the pressure difference PSDUCT-PSLICOR has risen form 60 to 65, possibly due to dirty filter.
- RADUP with new calibration seems too high
- Jun 30 11
- NOTE: LOZ3 inlet changed to mushroom inlet from dynamic inlet
- ESRI analyzer appeared to work fine until about 1810 Z, when the H20 went to half and the C02 signal went low.
- Transmit event only worked on VHF1
- 22 percent difference in LICOR and ESRI H20 fluxes
- RADUP with new calibration seems too high

- ESRI analyzer repaired, ran well throughout flight Jul 01 12 - Computer quit at 1644 GMT, changed tape and restarted; 2 tapes this flight - Backup wind system failed due to loss of backup heading and pitch and roll attitudes at 165518 GMT - RADUP with new calibration seems too high (maybe temperature) - Transmit event removed; VHF affects dew point - RADUP with new calibration seems too high (maybe temperature) Jul 02 13 - Transmit event removed; VHF affects dew point - Computer quit at 233757 GMT: 2 tapes this flight Jul 02 14 - On second tape, there is no Novatel data and no third wind data - RADUP with new calibration seems too high (maybe temperature) - Transmit event removed; VHF affects dew point - Green 660 read -0.6 when near dark - RADUP with new calibration seems too high (maybe temperature) Jul 03 15 - Transmit event removed; VHF affects dew point - Green 660 underreads -0.6 - Novatel not turned on this flight to reduce risk of computer halt - LICOR was not running correctly until 1605 Z - RADUP with new calibration seems too high (maybe temperature) Jul 04 16 - Transmit event removed; VHF affects dew point - Green 660 underreads -0.6 - Novatel not turned on this flight to reduce risk of computer halt - RADUP with new calibration seems too high (may be temperature) Jul 05 17 - Transmit event removed: VHF affects dew point - Green 660 underreads -0.6 - Novatel not turned on this flight to reduce risk of computer halt - RADUP with new calibration seems too high (maybe temperature) Jul 05 18 - Transmit event removed; VHF affects dew point - Novatel WAS operated on this flight to see if the computer would halt with a T2 error; it did - Novatel left off this flight Jul 08 19 - Backup wind system unserviceable after 1625 Z as pitch, roll and heading synchro signals not - ESRI H20 has some big steps in Event 1, sounding - Surface very hot; PRT5 limited at 51.2 for significant portions of Kingfisher line - RADUP with new calibration seems too high (maybe temperature) - Transmit event removed; VHF affects dew point Jul 09 20 - PDNBC 0.2 mb bias removed - LOZ3 not on until about 3 minutes after takeoff - RADUP with new calibration seems too high (maybe temperature) - Transmit event removed; VHF affects dew point - Trimble GPS data inaccurate to approximately 1530: use Novatel in plots Jul 10 21 - RADUP with new calibration seems too high (maybe temperature) - Transmit event removed; VHF affects dew point

- Jul 12 22 LICOR not correct until 1508; line off
 - RADUP with new calibration seems too high (maybe temperature)
 - Transmit event removed; VHF affects dew point
- Jul 13 23 RADUP with new calibration seems too high (maybe temperature)
 - Transmit event removed; VHF affects dew point
- Jul 14 24 RADUP with new calibration seems too high (maybe temperature)
 - Transmit event removed; VHF affects dew point
 - Special Test, last two runs: LICOR inlet changed from the duct to a separate forward-facing inlet on top of fuselage next to duct inlet
 - Even at higher altitudes, there is a significant difference between LICOR and ESRI H20 fluxes; see cospectra
- Jul 16 25 LICOR and ESRI H20 fluxes had large differences at low altitudes, but excellent agreement at higher altitude.
 - The LICOR zero has shifted upwards to about +9 from its usual -7 to -8.
 - RADUP with new calibration seems too high (maybe temperature)
 - Transmit event removed; VHF affects dew point
- Jul 17 26 DAT write problem at 0050 Z; 2 tapes this flight.
 - RADUP with new calibration seems too high (maybe temperature)
 - Transmit event removed; VHF affects dew point
 - There are positive excursions in both C02 analyzers in conjunction with negative excursions in ozone, indicating that the aircraft flew through an exhaust or smoke plume on some of the runs (high and low altitude)
- Jul 18 27 The LICOR zero has shifted upwards to about +9 from its usual -7 to -8.
 - RADUP with new calibration seems too high (maybe temperature)
 - Transmit event removed; VHF affects dew point
 - The LICOR zero has shifted upwards to about +9 from its usual -7 to -8.

TABLE 6: TWIN OTTER DATA SUMMARY - SGP97

The following pages present a summary of the data from all of the flux runs flown by the Twin Otter in SGP97. NOTE: This summary is from the initial in-field analysis and will be updated when data are re-analyzed with final calibrations and the Kalman filtering algorithm is applied to the wind data. Note also that the fluxes and rms values listed here were computed from linearly detrended data.

The legend below lists the column headings, units, and a brief description of the parameter.

Data on each table are grouped by the site flown, after which are presented two summary lines of data giving: (1) the averages for all the runs flown at that site, and (2) the Bowen Ratio and the standard deviation of the run-to-run variations in the flux estimates.

Column Heading	Туре	Units	Description
ST GMT		hr min sec	Greenwich Mean Time at start of run
SEC		sec	length of run in time
DIST		km	length of run in distance
PALT	run-mean	m	pressure altitude above mean sea level
RALT	Ħ	m	radio-altimeter height above terrain
TEMP	Ħ	deg C	air temperature
DEWPT	Ħ	deg C	dew point temperature
PRT5	#	deg C	radiometric surface temperature
GRN	#	-	greenness index (ratio 730/660 nm)
NETRD	*	$\mathrm{W}\mathrm{m}^{-2}$	net radiation
LICOR	n	ppm	C0 ₂ concentration
HDGL	*	deg true	aircraft heading
WIND	H	deg true	wind direction
	Ħ	$m s^{-1}$	wind speed
UGEL	rms	$m s^{-1}$	wind component from north
VGEL	#	$m s^{-1}$	wind component from east
WEP	#	$m s^{-1}$	vertical wind component
POT	Ħ	deg C	potential temperature
RC02	Ħ	mg kg ⁻¹	C0 ₂ mixing ratio
RH20	H	gm kg ⁻¹	H ₂ 0 mixing ratio
WT	flux	$\mathrm{W}\mathrm{m}^{-2}$	sensible heat flux
WQ	•	W m ⁻²	latent heat flux
WC	H	$mg m^{-2} s^{-1}$	C0 ₂ flux
UW	*	$N m^{-2}$	momentum flux along mean wind direction
WOZ	H	$\mu \mathrm{g}\mathrm{m}^{-2}\mathrm{s}^{-2}$	ozone flux

SGP FLIGHT 01, LITTON WINDS 1 NRC C-FPOK, FILE DARCPOK97 MEW(12 JUNE 97), FLIGHT DATE 18-JUN-97 PRINT DATE 18-JUN-97

NOSEBOOM TEMPERATURE DATA USED MEAN VIND DIRECTION AND SPEED FROM LITTON

704 3 CORRECTED FLUXES 옾 3 UGEL VGEL WEP POT RC02 RH20 WT ST GMT SEC DIST PALT RALT TEMP DEWPT PRT5 GRN NETRO LICOR HDGL WIND RUN AVERAGES EL RENO LINE LITTON WINDS DETRENDED

0. 27.15 10.97 31.4 1.86 661. 402.6 264 226 6.3 0.82 0.85 0.82 0.15 3.3 0.62 70. 448. -0.11 -0.18 -0.49 16 17 57 341 18.51 573. BACKUP WINDS

0. 28.13 17.24 31.1 1.80 678. 403.5 094 225 5.2 4.01 1.43 0.85 0.21 3.5 0.54 86. 176. -0.66 0.35 -0.59 0. 23.63 12.60 31.6 1.48 706. 400.5 264 286 51.9 0.96 0.65 0.89 0.38 4.4 2.07-103.1528. 1.08 -0.04 -1.11 0. 24.15 13.96 31.7 1.57 718. 402.3 096 168 22.4 1.07 0.82 1.04 0.26 3.7 1.50 -19. 922. 0.10 -0.07 -0.59 0. 27.13 10.97 31.4 1.86 661. 402.6 264 227 6.5 1.38 0.80 0.82 0.15 3.3 0.62 45. 463. 0.75 -0.07 -0.38 16 26 43 242 15.57 497. 16 51 05 244 0.95 1018. 16 58 08 228 1.65 948. 16 17 57 341 18.51 573.

02, LITTON WINDS FL IGHT SGP DATE 19-JUN-97 PRINT DARCPOK97_NEW(18 JUNE 97), FLIGHT DATE 19-JUN-97 1 NRC C-FPOK, FILE

						01 - 10 5		m 0110 -+	~ ~	~ ~	0.	MNAN
		1 05			-0.23	-0.12 0.01 -0.45 -0.27	-0.21	-0.38 -0.52 -0.45	-0.47	-0.37	-0.20	-0.33 -0.67 -0.19
	"	3			-0.40	-0.39 -0.39 -0.43	-0.32	-0.39 -0.48 -0.41 -0.42	-0.42	-0.20	-0.12	-0.37 -0.32 -0.29 -0.50
	FLUXES	3			0.04	0.29	0.28	-0.34 -0.32 -0.38 -0.36	-0.35	0.15	86.0	0.10
	CORRECTED	3			243.	218. -27. 536. 464.	298.	269. 365. 207. 319.	2% 59.	511. 46.	233.	
1	Š	5			22.	-45. 108. -63.	-49.	83. 83. 83.	93.	-73. 5 31. 5	-21.	
		RH20			0.25	2.1 0.59 - 1.8 0.61 2.1 0.91-1	0.72	1.2 0.37 1.1 0.45 1.3 0.41 1.1 0.41	1.2 0.41 0.32	0.82 0.59 1.7 1.81 0.72 0.46 1.5 1.50	1.30 0.77 0.52 1.6 1.65 BOVEN RATIO= -0.08	0.50
i		RC02			1.0	2.1 2.1 1.6	1.9	1.1	1.2	7:1	1.6	0.000
)		POT			0.13	0.31	0.35	0.25 0.25 0.25 0.25	0.25 0≖	0.59	0.52 0=	0.13 0.13 0.12
		Æ			8.	6.57 6.37 7.83	.78	0.8 0.81 0.75	%.78 R¥11	22.0	7.7 RATI	0.95 1.05 0.88 1.10
		VGEL 1			1.08 0.90 0.13 1.0 0.25	1.35 1.28 1.28 1.23	1.41	1.22	1.24 0.79 0.25 BOWEN RATIO=	1.35 (1.30 0.77 0.9 BOVEN RATIO=	86.59
	RMS	UGEL			1.05	5552	10.5 1.08 1.41 0.78 0.35 1.9 0.72	1.39	1.28	12.0 0.86 1.35 11.2 0.80 1.24	0.83	1.03 0.97 1.19 0.99
		9			8.3	10.7 10.0 10.7	10.5	8.8 4.8 5.5	8.5	12.0 11.2	11.6	9.0 9.0 9.1
		VIN			221	224 228 222 222	224	201 208 207 212	207	220	221	208 208 204 207
		HDGL				263 100 100		265 099 267 100		2% 102		265 101 265 100
		NETRD LICOR			385.4 099	382.7 382.6 381.3 381.0	381.9	380.2 379.8 379.3 378.6	379.5	376.8 264 377.6 102	377.2	378.3 378.2 378.0 377.6
		ETRD			561.	573. 593. 623.	601.	652. 667. 678. 691.	672.	696. 712.	704.	716. 727. 73%.
		S N				1.63 1.65 1.58	1.62	1.83 652. 1.80 667. 1.81 678. 1.82 691.		1.57	1.56	3322
•		DEUPT PRTS			30.6 1.71	30.3 31.1 31.6	30.9	32.4 32.7 32.8 32.7	32.7 1.82	32.8 1.57 32.7 1.55	32.8	33.7 33.5 34.0
: !		19				19.33 19.37 18.95 17.80		21.09 21.19 21.19	20.94	15.12	15.75	19.34 19.03 18.84 19.53
	ERAGES	P DE			1 20	25 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	0 18	8 2 2 2 8 2 2 2		7 15 9 16		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	VERA	TEMP			28.1	25.7 8.8 26.1	26.0	30.56 30.74 31.05 31.19	39. 30.89	26.4 26.3	26.4	28.2 28.2 28.2 28.2
1	RUN AVI	PALT RALT		200	15 33 47 224 14.42 585. 153. 28.11 20.62	485. 25.71 477. 25.82 490. 26.15 481. 26.32	898. 483. 26.00 18.86	42. 30 41. 30 35. 31		RUNS AT 0.8 Z1 16 47 14 289 15.14 1082. 672. 26.47 16 55 60 222 15.00 1063. 654. 26.39	15.07 1073. 663. 26.43	374. 28.33 390. 28.28 410. 28.22 394. 28.43
		PALT		INTERCOMP WITH LONG EZ, 500 1	585.	900. 892. 896.	898.	78 78 78 78 78 78 78	482.	1082. 1063.	1073.	796. 810. 830. 815.
1		DIST		LONG	4.42	5.38 5.29 5.27	14.99	FT 4.76 4.46 4.93 4.12	14.57	5.14	5.07	4.89 4.94 5.11
		SEC	빌	HIT	224 1	0.8 309 1 326 1 392 1	-	100 257 1 219 1 1 973 1 222		.8 Z1 289 1 222 1	-	274 1 274 1 237 1 285 1 241 1
	NOED		Ş	G G G	. 25	S AT 52 3 06 3 17 2 05 3	SN	S AT 09 37 37 24	N.	AT 0	RUNS	AT 0 53 54 54
!	DETRENDED	ST GMT	EL RENO LINE	INTER	15 33	4 RUNS AT 0.8 21 15 42 52 309 15.38 15 50 06 226 15.09 15 56 17 292 15.29 16 03 05 204 14.21	4 RUNS	4 RUNS AT 100 FT 16 14 09 257 14.76 16 21 37 219 14.46 16 27 37 279 14.93 16 34 24 222 14.12	4 RUNS	RUNS AT 0.8 ZI 16 47 14 289 1 16 55 60 222 1	2 RU	RUNS AT 0.5 ZI 17 02 57 274 14.89 17 09 53 237 14.94 17 16 04 285 15.11 17 22 54 241 14.69

-0.32

-0.48

0.27

1.3 1.60 -88.1232.

10.3 1.03 1.15 0.91 0.39

738. 377.1 263 205

17 29 10 275 15.07 1083. 674. 26.15 17.60 33.7 1.58

INTERCOMP WITH LONG-EZ

-0.37 0.08

9.6

567. 192.

. 5

0.56

0.80

1.08 1.00 0.13 BOWEN RATIO=

9.0 1.05

202

378.0

727.

1.65

19.19 33.9

28.32

392.

813.

14.91

17 47 32 235 14.23 598. 160. 30.88 20.48 35.6 1.68 758. 378.4 101 196 9.0 1.06 1.42 1.10 0.19 1.1 0.51 102. 464. -0.38 -0.43 -0.70

1 NRC C-FPOK, FILE OARCPOK97_NEW(18 JUNE 97), FLIGHT DATE 20-JUN-97 PRINT DATE 20-JUN-97 SGP FLIGHT 03, LITTON WINDS

							~ –		010000000	A - 4
	707		0.39 0.50 0.32 0.33 0.33 0.33 0.33	-0.36 0.04		-0.33 -0.82 -0.74	-0.63 0.21		-0.22 -0.59 -0.39 -0.12 -1.15	-0.59
	3		7.00 20 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.0	-0.0 0.09		-0.23 -0.15 -0.07	-0.15		0.08 0.02 0.04 0.05 0.05 0.05	-0.11
FLUXES	¥		0.32 - 0.34 - 0.35 - 0.34 - 0.34 - 0.35 - 0.	-0.34 -		-0.09 -	0.0%		0.09 0.03 0.03 -0.03 -0.05	0.05
CTED	3		2246 2016 2066 2156 2176 2516 2186	222(16. (278(302(438. (339			463
CORRECTED	5		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	92. 2		20. 2 -55. 3 -41. 4	-25. 3 33.		7171. -11. 189. -72. 535. 3. 249. -56. 626.	-22. 4 37. 2
Ī	RHZ0 1		0.24 0.27 0.27 0.23 0.28 0.38						%20028	
	RC02 RI		00000000	1.1 0.27 0.41		0 2 8	1.0.1		1.3 1.94 0.9 1.61 0.9 2.07 0.7 1.03 0.6 1.04 0.7 0.80	3.8 1 3.05
	PO 180		0.19 0.22 0.22 0.24 0.25 0.25 0.25	.22 1		137	. 49		0.30 0.30 0.20).42 ()- =(
			0.95 0.91 0.91 0.87 0.87 0.87 0.87	1.89 0 RATIO		1.71	7.75 0 RATIO		2.00 2.00 2.00 2.00 2.00 2.00	3.86 C
	135,		944 144 144 144 144 144 144 144 144 144	1.42 0.89 0.22 BOWEN RATIO=		1.15 0.71 0.41 1.0 1.03 1.33 0.71 0.70 1.2 1.67 1.40 0.82 0.37 0.8 1.20	1.29 0.75 0.49 1.0 1.30 BOWEN RATIO= -0.07		1.24 1.19 0.94 1.19 1.09	1.17 0.86 0.42 0.8 1.31 BOWEN RATIO= -0.05
RMS	UGEL VGEL WEP		1.56 1.55 1.55 1.65 1.65 1.52 1.52	1.56 1 B					0.88 1 1.02 1 1.01 0 0.97 1	0.95
			0.01 10.3 10.3 10.2 10.2 10.2	10.2 1		12.2 1.24 1 13.5 0.82 1 12.0 0.97 1	12.6 1.01		11.5 11.5 11.2 11.2 11.2	11.4 (
	WIND		216 1 212 1 214 206 206 1 205 1 207 1	209 1		210 1 209 1 207 1	209 1		217 1 211 1 208 1 209 1 201 1	206 1
	MOGL		25,55,55,55,55,55,55,55,55,55,55,55,55,5			262 103 103			261 102 262 101 261	
			385.7 385.2 384.6 383.9 383.7 383.7 382.9	384.0		382.5 382.4 382.2	382.4		379.9 381.4 381.2 381.2 381.1 381.1	381.2
	Ĕ					8 8 8 8				
	DEWPT PRTS GRN NETRO LICOR		543. 560. 570. 587. 597. 610. 624.	591.		\$\$\$. 53. 53.	662.		73.7.3.	723.
	GR		1.87 1.88 1.88 1.85 1.85 1.85	1.87		3.1. 3.1. 3.1.	1.63		1.58 1.58 1.58 1.58 1.58	1.58
	RT5		31.1 31.7 31.7 32.2 32.6 33.9	32.0		32.9 32.8 33.5	33.1 1.63		77.7.7.3 77.7.7.3 74.7.7.3	34.3
	T F		21.48 22.64 22.68 22.50 22.50 22.50 22.23	22.03		20.18 19.37 20.43	19.99		12.99 18.94 19.10 20.40 20.90 21.05	20.08
ËS	, DE		25222222			848	19		2003	
VERAGES	TEMP		28.74 29.21 29.67 29.74 30.13	29.70		26.98 27.39 27.27	27.21		27.90 26.89 26.76 26.26 26.26	26.54
RUN A	RALT		40. 39. 38. 36.	38.		427. 441. 430.	433.		670. 554. 575. 568. 581.	571.
	PALT RALT	O !	47.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	477.		840. 855.	846.		1074. 982. 975. 986.	977.
	DIST	EL RENO	7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,	14.67		74.64 15.00 14.73	14.79	"	14.65 14.93 14.93 15.03	14.81
	SEC	테	22,4 22,7 22,7 22,7 23,7 23,7 23,1 23,1 23,1 23,1 23,1 23,1	7	S	227 14 282 19 232 14	-	EMPT	288 1 233 1 279 1 277 1 227 1	-
9		100 FT RUNS,	23322222	"	1300 FT RUNS	22 35 22 22 22 22 22 23 22 23 23 24 24 25 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	(A	0.8 ZI ATTEMPTS	522333 44444	6
DETRENDED	Æ	TT (27 40 45 52 52 53 11	RUNS	F	18 27 35	RUNS	12 8	50 16 57 41 04 01 10 42 16 46 23 46	RUNS
DE:	ST	Ď	<u> </u>	œ	13(555	M	0.	557777	ľ

SGP FLIGHT 04, LITTON WINDS 1 NRC C-FPOK, FILE OARCPOK97_NEW(18 JUNE 97), FLIGHT DATE 20-JUN-97 PRINT DATE 20-JUN-97

	NO.	2	FRAGES	9	u 6	3	4	9	Š			RHS	į	6	2	i c		ORRECT	6		
_	PALT RALT		EMP D	EMP I	PRTS	IEMP DEWPI PRIS GRN NEIRD LICOR HDGL	180		HDGL L			פבר <		<u>.</u>	201 201	UGEL VGEL WEP POT RCUZ RKZU		<u>s</u>	¥	3	704
	585. 24 576. 24	249. 30 245. 31	3.93 2 1.91 2	2.28	42.2	1.35	677. 672.	379.3	014 014	188 187	3.1 13.8	.67 1 .47 1	.35 1	.51	0.20	0.5 0.	34 18 34 18	2. 52 4. 164	60.1	30.93 22.80 42.2 1.35 677. 379.3 014 188 13.1 1.67 1.35 1.51 0.20 0.5 0.34 182. 5200.13 -0.99 -0.54 31.91 22.28 43.9 1.25 672. 379.1 014 187 13.8 1.47 1.52 1.27 0.24 0.5 0.34 184. 1640.15 -0.48 -0.30	0.0 W.W.
503 34.62	576. 23	∞	5.24 2	69.0	42.1	1.17	677.	378.9	017	<u>\$</u>	3.5	.38	.63	ы. Б	0.21	.5 0.	41 17	7. 281		0 -0.67	-0.4
20 03 12 729 33.75 20 15 27 782 36.42 20 28 36 771 36.10	593. 25 582. 25 586. 24	256. 32 250. 31 248. 31	2.91 2 1.94 2 1.55 2	7.18 2.29 0.84	41.5 42.3 41.1	1.14 (1.25 (1.31 (565. 540. 528.	378.5 377.8 376.6	192 191 192	183 183 189	14.6 1 16.1 1 15.5 1	88.8	8.3.	2,4%	0.27 0.21 0.18	N. N	40 28 48 14 45 14	9. 19. 2. 623	0.00	32.91 21.18 41.5 1.14 665. 378.5 192 184 14.6 1.55 1.65 1.64 0.27 0.5 0.40 289. 1990.03 -0.67 -0.56 31.94 22.29 42.3 1.25 640. 377.8 191 183 16.1 1.53 1.65 1.44 0.21 0.5 0.48 149. 6220.11 -1.00 -0.64 31.55 20.84 41.1 1.31 628. 376.6 192 189 15.5 1.35 1.44 1.26 0.18 0.5 0.45 142. 2520.08 -0.58 -0.28	0.00
STUDY WITH LONG-EZ,	BOTTOM 30	30 N	MILES	OF A	S-AN	MILES OF AS-AN TRACK - NORTHBOUND SINGLE EVENT, SOUTHBOUND SPLIT DUE TO LENGTH IN	8	RTHBOL	S QNC	INGLE	EVEN	T, SC	UTHBC	QND	SPLIT	DUE T	O LEN	CTH 13	TIME		
20 44 34 814 57.39	526. 186.	δ. 33	2.55 2	67"0	41.0	1.35	280.	376.3	014	194 1	14.61	.43 1	.43	.24	0.19	0.5 0.	49 13	9. 41	10.1	32.55 20.49 41.0 1.35 590. 376.3 014 194 14.6 1.43 1.43 1.24 0.19 0.5 0.49 139. 4110.13 -0.55 -0.32	-0.3
21 00 26 681 31.41 21 11 57 639 28.37	520. 18 525. 17	184. 35 178. 35	2.84 2	20.31	41.3 39.4	1.43	571. 561.	376.0 374.6	192 193	192 1	13.5 1	.38	.62	1.21	0.20	0.5 0. 0.5 0.	42 13 32 15	6. 28	50.2	32.84 20.31 41.3 1.43 571. 376.0 192 192 13.5 1.42 1.53 1.21 0.19 0.5 0.42 130. 4640.21 -0.82 -0.44 32.47 20.47 39.4 1.28 561. 374.6 193 191 13.6 1.38 1.62 1.22 0.20 0.5 0.32 156. 2850.07 -0.52 -0.36	4.0-9
57.75	515. 17	176. 3	2.88 2	20.35	39.8	1.37	510.	374.8	012	192 1	15.1	.51	.50 1	1.27	0.19	0.6 0.	32 14	7 14	70.1	20.35 39.8 1.37 510. 374.8 012 192 15.1 1.51 1.50 1.27 0.19 0.6 0.32 147. 1470.12 -0.82 -0.48	7-0-
30.52 27.03	510. 17 523. 17	173. 33 179. 33	3.15 2	20.15	39.8 38.1	1.41	4%. 477.	374.8 372.9	193 192	193	16.2 1	.52	.48	1.19	0.15	0.6 0.	30 9	7. 21.	20.1	33.15 20.15 39.8 1.41 496. 374.8 193 193 16.2 1.52 1.48 1.19 0.15 0.6 0.30 97. 2140.15 -0.56 -0.41 32.61 20.96 38.1 1.33 477. 372.9 192 191 15.5 1.48 1.45 1.27 0.20 0.7 0.33 142. 1920.10 -0.78 -0.43	5 -0.4 3 -0.4

SGP FLIGHT 05, LITTON WINDS 1 NRC C-FPOK, FILE DARCPOK97_NEW(21 JUNE 97), FLIGHT DATE 21-JUN-97 PRINT DATE 21-JUN-97

DETRENDED		RUN A	AVERAGES	S								æ	RMS					8	RECTED	CORRECTED FLUXES	S	
ST GMT SEC DIST	PALT RALT	RALT	TEMP	DEWP	T PRT	S GRN	NETRI	TEMP DEWPT PRTS GRN NETRD LICOR HDGL WIND	₹	占	용	UGEL	. VGE	e P	5	800	UGEL VGEL WEP POT RCOZ RH20 WT	5	3	ž	3	MOZ
BS-BS IN 2 HALVES																						
17 17 36 812 56.53 17 31 14 775 52.55	496. 168. 502. 169.		27.83 21.19 38.8 1.44 631. 373.7 015 185 9.3 1.19 1.24 1.08 0.19 0.8 0.18 126. 2200.30 -0.35 -0.61 28.26 21.51 39.3 1.24 657. 372.5 015 176 8.9 1.21 1.44 1.34 0.21 0.6 0.17 172. 2230.24 -0.34 -0.30	21.15	9 38.	3 1.2	4 631.	373.	.7 01 .5 01	5 18! 5 178	5.9.3	1.19	2.1.6	4 1.0	8 0.1	9.5	8 0.18 5 0.17	126. 172.	230. 233.	-0.30	-0.35	-0.61
CART LINE, DOWN AND	BACK																					
18 12 48 597 29.17 18 24 05 432 29.07	486. 174. 481. 168.	174. 168.	28.88 21.38 39.5 1.25 627. 371.2 178 171 9.9 1.10 1.28 1.19 0.19 0.6 0.18 158. 2220.23 -0.24 -0.26 28.99 21.48 39.7 1.26 640. 371.2 359 180 9.8 1.19 1.35 1.16 0.18 0.5 0.20 121. 2560.15 -0.11 -0.09	21.3 21.4	8 39. 8 39.	5 1.2	5 627 5 640	371.	.2 17 .2 35	3 17. 9 180	9.6	51.1	2.1.6	1.1	9 0.1	9 0	5 0.18 5 0.20	158. 121.	222. 256.	-0.23 -0.15	-0.24 -0.11	-0.26
TOP HALF OF BN-BS																						
18 33 25 587 28.69 18 43 18 518 26.13	489. 167. 507. 165.	167. 165.	29.16 21.45 39.5 1.19 646. 371.0 188 174 8.7 1.27 1.42 1.36 0.25 0.5 0.15 221. 2170.21 -0.30 -0.28 29.25 21.17 42.0 1.24 688. 370.8 189 179 8.8 1.47 1.36 1.49 0.27 0.9 0.23 282. 4270.51 -0.65 -0.43	21.4	5 39. 7 42.	5 1.1	979 4	. 371.	.0 18 8 18	84 17 17 17	8 8	3 1.47	7 1.4	2 1.3	6 0.2	7 0.	5 0.15	221. 282.	217. 427.	-0.21 -0.51	-0.30	-0.28
DW-DE, DE-DW																						
18 57 09 550 30.65 19 07 44 549 32.14	495. 157. 500. 163.	157. 163.	29.52 20.60 41.7 1.41 670. 369.6 100 179 9.3 1.52 1.49 1.28 0.24 0.7 0.30 192, 389, -0.34 -0.61 -0.19 29.59 20.64 41.4 1.40 580. 369.5 259 173 10.1 1.48 1.54 1.30 0.23 0.8 0.20 176. 2850.38 -0.44 -0.50	20.6 20.6	0 41.	7 1.4	1 670 0 580	369	.5 25 52 25	6 71 71	3 10.1	1.5	4.1.5	9 1.2	0.0	25 E	7 0.30 8 0.20	192. 176.	389. 285.	-0.34 -0.38	-0.61	-0.19
PART OF BN-BS																						
19 22 14 584 27.73	490. 162.	162.	29.85	20.7	2 41.	5 1.3	6 661	369	.3 15	71 0	3 11.	2 1.3	2 1.3	3 1.2	6 0.3	.1 0.	7 0.23	178	244.	-0.36	-0.55	29.85 20.72 41.5 1.36 661. 369.3 190 173 11.2 1.32 1.33 1.26 0.21 0.7 0.23 178. 2440.36 -0.55 -0.37

SGP FLIGHT 06, LITTON WINDS 1 NRC C-FPOK, FILE DARCPOK97_NEW(22 JUNE 97), FLIGHT DATE 22-JUN-97 PRINT DATE 22-JUN-97

	S.	RUN AVERAGES	GES							_	RMS					CORRECTED		FLUXES		
<u>a</u>	PALT RALT		TEMP DEUPT PRTS GRN NETRD LICOR	T PRT5	GRN)	NETRD	L100R	HDGL	WIND		UGEL VGEL WEP	ir VEP	8	RC02	RH20	5	3	ž	3	704
	GN-GS (5001), GS-GN (1501)																			
08 607 30.73 5 55 534 32.64 4	566. 179. 458. 64.	22.78	4 19.3 8 19.7	19.38 26.1 1.95 19.76 26.1 2.00	1.95	203. 168.	365.7 187 152 364.4 016 156	187		8.0 0.8	89 0.7 92 0.8	7.0 %	6 6 7.0 7.0	8.0 0.89 0.79 0.70 0.12 1.1 0.12 6.6 0.92 0.83 0.62 0.11 1.2 0.12	0.12	23.	97	-0.29 -	-0.20	-0.41
15 49 04 498 27.95 5	568. 160.		22.10 19.50 26.5 1.93	0 26.5	5 1.93	186.	365.7	231 139		6.0 0.9	% 0.7	1 0.6	8 0.1	6.0 0.90 0.71 0.68 0.15 1.3 0.13	0.13	27.	93	-0.33 -	-0.13 -0.40	07.0-
200																				
16 08 41 468 27.83 5 16 25 16 478 30.63 5	550. 147. 555. 141.	. 33.34 . 33.41	14 19.1 1 19.0	19.16 28.2 1.94 19.07 27.3 1.91	1.94	201. 177.	363.6 363.5	070 168 002 167		7.1 0.9	22 0.9 38 1.0	2 0.7	2 0.1	7.1 0.92 0.92 0.79 0.15 1.2 0.15 9.1 0.88 1.02 0.72 0.11 1.1 0.19		38. 1 22. 1	1411	-0.39 -	-0.26 -0.34 -0.27 -0.31	-0.34
ES (ES-EN (5001), EN-ES (1001)																			
16 46 07 437 28.93 5 16 55 31 524 27.63	509. 170. 381. 34.	83.	25.19 19.07 26.70 19.64	34.5 74.35.1	34.2 1.28 411. 35.1 1.31 474.	411. 474.	363.2 002 363.2 175	96 173	156	7.9 1.	33 1.4	12 1.1 55 0.8	800.2	9.0 1.05 1.12 1.18 0.20 0.6 0.19 110. 7.9 1.33 1.45 0.80 0.33 1.0 0.23 141.	0.19	110. 2	244 183	-0.30 -	-0.56 -0.47 -0.26 -0.43	-0.47
EW-EE, EE-EW (5001)																				
17 07 23 488 26.03 4 17 17 03 434 25.70	482. 143. 496. 157.	s. 25.01 7. 25.31	11 18.84 51 18.91	% 35.{ 71 38.3	35.8 1.31 38.3 1.25	530. 639.	363.2 096 362.6 262	096 262	151 152	8.6 1.	8 1.2 1.2	20 11:	12 0.7	8.1 1.10 1.25 1.12 0.17 0.7 0.15 108. 8.6 1.29 1.20 1.14 0.20 0.7 0.21 134.	0.15	108. 1	152 210	-0.23 -	0.42	3 -0.42 -0.63 0 -0.28 -0.51
EL RENO TRACK, 100'																				
7 33 46 249 14.41 6 7 39 39 254 14.45 6 7 45 54 245 14.28 6 7 51 51 259 14.61	471. 37. 467. 34. 467. 33. 463. 30.	7. 25.48 4. 25.49 5. 25.56 0. 25.55	18 18.92 19 18.99 56 19.10 55 19.34	28.28.4 7 28.4 7 28.5	28.4 1.72 355. 28.4 1.73 386. 29.2 1.72 418. 28.9 1.75 377.	355. 386. 418. 377.	360.7 264 360.7 102 360.4 264 360.3 102	2525 1024 1024 1034 1034 1034 1034 1034 1034 1034 103	2223	8.7 1. 8.7 1. 8.5 1.	37 1.3 39 1.2 47 1.4	50 0.7 52 0.7 58 0.7	2262	9.7 1.37 1.30 0.74 0.20 1.1 0.33 8.7 1.39 1.32 0.74 0.24 1.4 0.27 9.5 1.47 1.48 0.73 0.23 1.5 0.24 8.5 1.48 1.49 0.76 0.27 1.6 0.28	0.33 0.27 0.24 0.28	28.83 	164 194 157 198	0.30	0.51	-0.30 -0.43 -0.24 -0.46 -0.51 -0.35 -0.41 -0.44 -0.27 -0.48 -0.49 -0.46
14.44 1	467. 34.		25.52 19.09	.82 %	28.7 1.73	384.	360.5		£1	9.1 1.43	43 1.4 BO	10 0.7	74 0.7 VT10=	1.40 0.74 0.24 1.4 0.28 BOWEN RATIO= 0.44	0.28	\$ 5	78. 18.	79. 1780.41 -0.47 -0.33 10. 18. 0.07 0.03 0.09	0.03	-0.33

SGP FLIGHT 07, LITTON WINDS 1 NRC C-FPOK, FILE DARCPOK97_NEW(22 JUNE 97), FLIGHT DATE 24-JUN-97 PRINT DATE 24-JUN-97

	707			0.00 0.00 0.00 0.00 0.00 0.00	0.01		-0.03 0.00 0.00 -0.04 -0.18
,	3			0.30 0.32 0.33 0.34 0.34	-0.62		0.36 -0.81 -0.03 -0.48 -0.87 0.00 -0.31 -0.92 0.07 -0.33 -0.89 -0.04 -0.43 -0.83 -0.18 -0.37 -0.94 0.00
FLUXES	£			0.0000000000000000000000000000000000000	0.00		0.35 0.33 0.33 0.33 0.33 0.33
CORRECTED	3						228 3317 3354 3355 275 285
SOR	5			48. 33.1 69. 31. 59.	38.		
	RH20			0.5 0.73 -48. 311. 0.7 1.08-133.1246. 0.6 0.95 -69. 603. 0.5 1.09-145.1652. 0.5 0.72 -31. 429. 0.7 0.87 -59. 589.	200 17.0 1.54 1.44 1.06 0.31 0.6 0.90 -88. 820. BOWEN RATIO= -0.11 39. 435.		196 11.8 1.75 1.73 1.03 0.21 1.1 0.34 98. 194 12.2 1.79 1.56 1.01 0.25 1.2 0.35 130. 191 14.4 1.94 1.58 0.99 0.24 1.0 0.33 107. 191 14.5 1.98 1.92 1.05 0.27 1.1 0.44 122. 196 13.3 2.01 1.91 1.06 0.24 1.1 0.37 112. 194 13.3 1.97 1.86 1.05 0.26 1.2 0.38 127. 193 14.1 2.16 2.01 1.06 0.26 1.0 0.32 118. 188 15.1 1.88 1.95 1.01 0.28 1.1 0.36 126.
	RC02 F			0.5	0.6 (-2020-
	P01 20			0.32 0.34 0.34 0.24 0.26	 		0.27 0.27 0.26 0.28
				20.1.05 20.1.05 20.05 20.00 20.00 20.00 20.00	.06 (RATIO		828888
	UGEL VGEL WEP			1.48 1 1.39 1 1.38 0 1.18 1 1.27 0	.44 1 Oven		1.73 1.58 1.92 1.92 1.92 1.93 1.95
RMS	EL V			2.5.5.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	- 72 - 19		2.16.2 1.98.1 1.97.1 1.97.1 1.88.1
				6.45.7. 6.45.7. 6.45.7. 7.45.6	0		124.44.45.45.45.45.45.45.45.45.45.45.45.45
	WIND			204 16 199 16 198 17 202 18 203 18 200 15 197 16	00 17		196 11 194 12 191 14 196 13 196 13 198 15
	HDGL			255 2 108 1 111 2 108 2 255 2 256 2 266 2	Ñ		104 1 260 1 260 1 260 1 107 1 107 1 105 1
	LICOR H			361.5 2 361.6 2 361.6 2 361.4 2 360.9 1 350.0 3	-:		
	0 11				. 361.1		
	NETRD			5 649. 5 649. 5 693. 5 693. 7 736. 3 760.	30.2 1.60 691.		639. 644. 644. 656. 636. 636. 740. 767.
	GR			26.1. 26.1.	3.		1.85 1.83 1.88 1.88 1.87 1.87
	PRTS		<u>a</u>	28.6 29.4 29.4 30.0 31.0 31.2	30.2	GMP	32.55 32.93 32.93 32.93 32.93 32.93
	DEWPT PRTS		NG EZ INTERCOMP,	15.04 9.12 17.02 17.02 15.81 15.84 16.12	13.23	ong-ez INTERCOMP	20.14 19.60 19.60 19.00 19.05 19.05
AGES	TEMP DE		LNI Z	7888274		ez 1)	25 25 25 25 25 25 25 25 25 25 25 25 25 2
AVERAGES	16		NG E:	20.71 21.08 21.27 20.59 20.67 20.67 20.71	20.87	-Buo	26.80 27.35 27.35 27.35 28.28 28.38 28.71 28.71
Z S	RALT		<u> </u>	675. 685. 680. 823. 818. 844. 844.	Ξ.	E	2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
	PALT RALT		CLAST RUN WITH LO	1085. 1089. 1089. 1224. 1224. 1251. 1255.	<u>7</u>	(Last run with lo	5,53,55,53 5,55,53 5,55,53 5,55,53 5,55 5 5,55 5 5,55 5
	DIST		ST RL	7.7.7 7.7.3 15.39 1.6.33 1.6.93 1.6.93 1.6.93 1.7.99 1.39	15.11 1184.	ast r	7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
			Ë		5		- # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 #
9	SEC	C :		60 288 24 238 39 239 39 239 35 245 35 245 35 245		RUNS	19 241 22 268 22 268 56 266 21 247 60 241 60 241
DETRENDED	ST GMT	EL RENO	8 ZI	835255 833 833 833 833 833 833 833 833 833 8	RUNS	100 FT RUNS	2008 4 4 6 8 3 6 5 8 4 4 6 8 3 6 6 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6
9	S	ᆈ	0.8	\$1 21 51 F	€0	Ş	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

	707			-0.39 -0.12 -0.18	0.07 -0.11 -0.17		-0.15 -0.25 -0.30 -0.27	-0.23 -0.34 -0.27	-0.29
S	3			-0.03 -0.03 -0.12	-0.25 -0.24 0.01		-0.10 -0.09 -0.18 -0.17	-0.22 -0.34 -0.34 -0.25	-0.26
CORRECTED FLUXES	ž			0.55 0.22 0.23 0.23	0.44		0.01 -0.02 -0.06 -0.15	0.45 -0.45 -0.64 -0.43 -0.38	-0.46 -0.26 0.09 0.05
RECTED	3			167. 47. 52. 105.	282. 665. 371.		43. 66. 222.	216. 314. 383. 372.	2%. 78.
SO	5			.51. .2.	18. -92. 0.		8,42,6,5	<u> </u>	118. 22.
	RH20			0.44 0.27 4.2 0.45 0.37 0.28 2.5 0.33 0.40 0.13 2.3 0.25	5.13		6 0.38 0.09 1.9 0.18 3 0.37 0.08 1.3 0.17 5 0.50 0.09 0.9 0.15 7 0.50 0.12 1.6 0.21 4 0.73 0.31 1.9 0.27	0.28 0.42 0.49 0.48	1.16 0.71 0.27 1.7 0.40 118. BOWEN RATIO= 0.40 22.
	RC02			2.5 2.3 2.3	1.9 2.6 1.7		9.1. 9.1. 9.1. 9.1.	2.2 7.2 1.5 1.5	1.7
	<u>70</u>			0.27 0.28 0.13 0.28	0.44 1.9 1 0.51 2.6 1 0.32 1.7 1		0.08 0.09 0.12	0.27 0.29 0.28 0.25	0.27 0=
	di			37 37 37 37 37 37	0.74 0.58 0.83		35.55	0.66 0.27 1.8 0 0.77 0.29 2.2 0 0.69 0.26 1.5 0	D. 71 RATI
	VGEL 1			0.92 0.76 0.74 1.01	1.00		23.25. 9.25.9.	0.8 1.25 1.05 1.05	.16 OVEN
RMS	UGEL V			60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.73 1.08 1.09 1.09		2828	1.23	14 1
	S			8.9 0.60 7.9 0.46 7.7 0.61 9.4 0.85	8.1 8.9 6.9 0.		3.9 0.62 4.5 0.66 4.6 0.79 7.2 0.94	6.2 1.03 5.6 1.29 6.5 1.33 6.9 1.07 5.2 0.99	6.0 1.14
	WIND								
	HDGL			7 222 9 217 6 213 1 219	8 237 7 236 7 223		6 218 9 221 5 218 7 212 7 232	9 234 7 222 9 219 9 217 6 215	221
				9 267 2 099 6 266 4 101	9 098 1 267 3 097		4 096 6 269 1 095 8 267 2 097	6 269 8 097 3 269 8 269 4 096	∞
	L100R			360.9 359.2 363.6 358.4	356.9 357.1 356.3		369.4 368.6 368.1 364.8 361.2	360.6 357.8 357.3 356.8 356.4	357.8
	NETRO			92. 91. 114. 308.	598. 628. 573.		88. 108. 146. 267. 543.	599. 646. 677. 612. 497.	606.
	X X			2.62 2.82 2.44 1.87	3.5 3.5 3.5 3.5		24.9 3.75 25.1 1.16 25.4 2.16 26.4 2.26 30.2 1.99	2.00 1.93 1.97 2.07	19.20 32.2 1.99
	TEMP DEWPT PRT5 GRN			24.9 24.8 25.3 26.7	30.5 30.9 31.2		0-440	30.6 32.6 32.8 32.6 32.2	. 2
	₽			2222	8 30 7 30 31		\$48338 \$48338	6 0 W 4 E	0
S	DEWP			19.79 20.75 19.20	17.18 17.26 9.17		22.07 22.20 22.03 21.95 21.66	21.69 21.32 21.13 12.14 19.71	19.2
AVERAGES	d.			22.33 22.47 22.16 22.88	22.27 21.95 22.07		24.93 25.12 24.83 25.42 26.28	26.38 27.12 27.34 27.28 27.28	27.08
AVE	=			8888	222				. 27
S.	PALT RALT			392 396 400 394	631. 619.		33.33.	34233	35
	PALT			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	983. 1013. 1000.		£51. £21.	443. 445. 445.	442.
	DIST			14.59 14.92 15.02 14.83	14.98 15.07 14.40		14.69 14.51 8.76 14.63	14.38 14.63 14.74 14.86	14.59
	SEC			232 1	229 1 292 1 222 1 1 222 1 1		237 14 263 141 141 278 1	270 1 233 1 274 1 278 1 218 1	-
9		C:		8388	88 83 22 22		234 234 162 162 162 163 163 163 163 163 163 163 163 163 163	532 22 22 22 22 22 22 22 22 22 22 22 22 2	w
DETRENDED	ST GMT	EL RENO	17 9	8888	848	<u> </u>	13 18 42 55 55	24 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RUNS
DET	S	岀	9.0	444 Φ	252	100	7 7	25	•

SGP FLIGHT 09, 1 NRC C-FPOK, FILE OARCPOK97_NEW(25 JUNE 97), FLIGHT DATE 27-JUN-97 PRINT DATE 27-JUN-97

DETRENDED			RUN AVE	VERAGES	v							RMS					8	RECTED	CORRECTED FLUXES		
ST GMT SEC	DIST	PALT	RALT	TEMP (EMP DEWPT	PRT5	GRN	NETRO	LICOR	HOGL	ONIA	UGEL	VGEL 1	YEP P	POT RC02	32 RH20	5	3	3	3	707
EL RENO																					
59 56		439.	31.	.56	21.22	31.1	2.26	698.	357.6	569			1.10 (0.65 0		.9 0.38		291.			0.00
16 05 52 233 16 11 07 273	14.71	7 7 7 8	K F	28.66	21.28 24.28	31.4	2.22 2.42	الم الم	358.0	8 %	219 6.1		8 8	8.0	22.0	1.7 0.38	18		7.0	-0.24	8.8
17 26		£ .	×	8	21.31	30.9	2.7	628	359.0	8			8	8.8		1.6 0.37		226			80.
22 57		438.	8	Ξ	21.23	31.8	2.13	721.	358.6	5 68			.0%	.62 0							0.0
\$ -		440.	ž.	გ.	21.21	32.5	8	776.	358.3	&	207 6.0		1.10	22.0		1.9 0.38	101.	366.			0.0
6 RUNS	14.56	.077	32.	28.88	21.27	31.5	2.17	. 669	358.4	7	217 6.4	1.12	1.07 0.67 BOWEN RAT	1.07 0.67 0. BOWEN RATIO=	21	1.8 0.38 0.27	80. 12.	2%. 36.	0.045	-0.27	0.00
KINGFISHER,	ES-EN																				
46 20				8	19.65	35.0		ė	356.8	356			1.27	.68 0		.2 0.57	61.	418.		0.28	0.0
16 54 50 526	27.00	354.	32.	30.80	19.74	35.8	4:	<u>ب</u>	356.5		212 6.5	1.39	1.22	0.73	0.33 1	1.4 0.65			-0.34	-0.24	0.00
23 K				? %	19.59	37.3			356.2	ე წ			- 6			1.4 U.33		516. 154.		3 2	88
33 59				.52	19.50	37.4		<u>₹</u>	355.6	357			1.19	2.0			ĸ	273.		0.28	0.0
42 17				.45	19.70	37.3		320.	355.4	3		_		0.880				366.		0.33	0.0
6 RUNS	27.10	355.	33.	31.05	19.65	36.5	1.42	&	356.1	7	214 6.6	1.39		1.25 0.70 0.29 BOWEN RATIO=		1.3 0.53 0.24	92. 18.	382. 71.	-0.24 .	-0.26	0.00
EL RENO																					
01 44		445.	33.	.16	20.80	33.5	2.39	772.	356.3	268			1.42	.66 0	.31	.7 0.42		% %		٠. د.	0.0
07 50		442.	:	8 5	20.62	34.7	8.8	888	355.6	888	5.4		1.36	2.7	83	1.9 0.50	-,	374.		0.23	8.6
19 27		45.	3 55	ç 7	20.44	33.4	8.6	; è	355.2	88			2.7	- 69	2 7 7	8.0		ç Ç		22.0	88
18 25 08 268 18 31 17 237	14.67	442. 446.	¥.	30.53	20.52	37.8	2.09	917.	355.0 355.2		215 6.0 207 5.2	1.28	F. 3.	0.73	0.26	1.8 0.37	88		0.5	5.0	800
))							
6 RUNS	14.62	443.	ĸ.	30.39	20.55	34.5	2.15	828.	355.4	Ň	210 5.9	1.32	1.38 0.71 0.27 BOWEN RATIO=	0.71 0 RATIO		1.9 0.48 0.27	8.	378. 51.	-0.58	-0.28 0.05	0.0

SGP FLIGHT 10. TAPE 1 1 NRC C-FPOK, FILE GARCPOK97_NEW(29 JUNE 97), FLIGHT DATE 29-JUN-97 PRINT DATE 29-JUN-97

	~			% 2 8 %	10 81 81	13	27		28832	8885	32
	704			-0.04 -0.28 -0.16	-0.10	-0.17	7 -0.27		2 -0.23 2 -0.23 3 -0.34 5 -0.34	1 -0.30 2 -0.35 4 -0.32 5 -0.31	0 -0.32 3 0.02
S	3			0.03 -0.13 -0.23	-0.15 -0.20 -0.24	-0.33	-0.17		-0.32 -0.38 -0.38 -0.38	-0.40 -0.40 -0.36	-0.40
FLUXES	3			0.17 0.42 0.36 0.52	0.28 0.23 0.21	0.10	-0.05		0.05 0.04 -0.12 -0.16	-0.40 -0.46 -0.51 -0.51	-0.46 0.04
CORRECTED	3			3.6.3.	52. 96. 167.	133. 152.	<u>8</u>		38.538.5	175. 189. 203.	₹.8
8	5			16. 18.	-43. -22. -27.	¢. 4.	24.		35.23.88. 39.39.	5888	82. 7.
	RH20			0.00	0.19 0.22 0.25	0.24	0.27		0.08 0.08 0.13 0.13	0.22 0.22 0.28 0.29	1.5 0.25 0.41
	RC02			2.9 2.8 2.1	3.3 1.1 1.1	0.7	9.0		2.4.0.4	2:1 3:1 5:1	1.5
	POTR			0.32 0.19 0.19 0.15	0.35 0.15 0.17	0.12	0.11		0.10 0.12 0.15 0.15	0.17 0.21 0.20 0.21	0.20 10=
	9			2.52.39.	0.63 0.84 0.81	6.7	0.93		20.00 20.00	222K	7.75 RATI
	VGEL 4			0.89 0.41 0.91 0.54 1.02 0.62 0.99 0.66	1.23	1.23	0.94		0.88 0.88 0.10 0.95	1.32 0.04 1.32 0.04 0.04	1.23 0.75 0.8 BOWEN RATIO=
RMS	UGEL V			0.45 0.83 0.90 1.95	0.85 1 0.95 1 1.02 1	1.14 1	0.91		1.18 (1.15 (1.19 1.09 (1.09 (1.18 (1.19 1.19 (1.	1.15	1.27
				15.3 12.0 12.3 11.1	12.4 0 10.3 0 9.8 1	9.5 1	8.8		8.0 7.7 7.7 7.7	7.9 8.0 7.9 8.0	7.9
	VIN			195 1 193 1 191 1	200 202 201	211 204	502		182 171 181 178	196 193 198	197
	HDGL			258 106 260 103	261 102 262	101 263	101		101 265 101 101	101 265 101 265	
	LICOR			362.2 370.4 370.4 372.1	369.2 364.7 363.8	362.4 362.2	361.0		374.2 374.2 374.4 374.3 373.5	363.3 362.6 361.1 360.6	361.9
	NETRD			119. 257. 273. 325.	314. 528. 573.	634. 652.	698.		211. 235. 3319. 326.	598. 614. 675. 690.	644.
	GRN NE			2.03	2.07 1.87 1.91	.81			2.86 2.49 2.49 2.80	2.14 2.17 2.13 2.11	2.14
				23.2 2 23.7 2 24.0 2 24.9 1	25.2 2 27.6 1 28.4 1	28.7 1.81 29.0 1.87	29.7 1.82		23.6 2 24.6 2 24.8 2 25.8 2	28.8 20.1 30.0 30.3	29.6
	TEMP DEWPT PRTS			8448	828	34			23.24 23.33 23.35 23.35 23.45 24 25 25	23.23 23.83 23.83 23.83 23.83	23.81 2
ES	DEF			21.85 22.16 22.17 3 22.29	21.99 22.56 22.66) 22.34 5 7.75	7 22.83		22222	2222	
VERAGES	TEMP			22.51 22.14 22.09 22.28	22.50 23.60 23.90	23.49	24.67		23.57 23.72 24.27 24.39 24.93	26.96 27.17 27.72 27.84	27.42
RUN A	RALT			284. 269. 292.	350. 335. 339.	435. 430.	361.		***	37.33.3	¥.
	PALT RALT			26.5 209. 209.	784. 732. 735.	845. 840.	774.		8,8,6,8,8 8,6,8,8,8,8,8,8,8,8,8,8,8,8,8,	66. 66. 65. 65.	.794
	DIST			14.78 14.80 14.69 14.47	14.86 14.64 14.55	14.69 15.10	14.71		14.56 14.59 14.62 14.56 13.82	14.73 14.56 14.66	14.66
	SEC			282 1 252 1 274 1 245 1	284 1 242 1 278 1	241 1 289 1	240 14.71		251 1 252 1 256 1 261 1 242 1	252 270 247 269	•
NDED		읾	_	8858	844	43			15 07 31 47	1283	RUNS
DETRENDED	ST GMT	EL RENO	0.8 ZI	13 33 13 33 13 38 13 56	14 08 15 00 15 13	15 36 15 42	16 00 40	100	13 17 13 23 13 44 13 50 14 14	15 19 15 25 15 48 15 54	7 B

SGP FLIGHT 11. WITH L-E 1 NRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 30-JUN-97 PRINT DATE 30-JUN-97

DETRENDED			RUN A	AVERAGES	SES								RMS					0	CORRECTED		FLUXES		
ST GMT S	SEC DIST		PALT RALT		TEMP DEWPT	PT PRT5	TS GRN	NETRO	GRN NETRO LICOR	R HDGL		MIND	UGEL VGEL		<u> </u>	POT 28	RC02 R	RH20 4	3		3	3	70M
KINGFISHER LINE, ES-EN	LINE	ES-EN	HIT	I LONG-EZ	ĘZ																		
16 28 30 4 16 28 30 4 16 36 26 5 17 18 23 5 17 29 05 4 17 37 56 5	400 26.79 565 27.19 566 26.78 403 27.08 547 27.33 393 26.61	79 380. 8 381. 8 383. 13 380.	282282	27.52 27.87 30.04 30.04	2 2 2 3 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	17 36.6 37 36.7 33 39.3 80 39.5 77 40.2	5 1.42 3 1.38 5 1.38 5 1.38 5 1.38	25 733. 28 736. 28 814. 39 817.	2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	2 001 4 179 9 181 3 358 1 181 2 358	174 174 185 190 190	8.9.1. 6.9.9 8.9.9	74.1. 7.4. 7.4. 1.6.1. 65.	1.38 1.44 1.50 1.70	0.85 0.85 0.88 0.94 0.94	0.35		0.25 0.23 16 17 17 17 17 17 17 17 17 17 17 17 17 17	143. 225. 165. 193. 167. 228. 171. 192. 195. 275.	50.31 80.27 20.22 50.32 50.32		0.44 0 0.54 0 0.55 0 0.55 0 0.55 0	-0.48 -0.23 -0.35 -0.47
6 RUNS	26.96	6 381.	. 32.	. 29.12	2 23.61	61 38.8	.8 1.39	.9 787.	365.9	0.	185	7.6	1.53	1.55 0.88 0.34 BOWEN RATIO=	88.0 RATIO		1.0 0	0.23 164	4. 226. 8. 29.	60.27 9. 0.05			-0.38 0.08
600 - 16 50 41 3 16 59 06 5 17 10 12 3	395 27.27 590 27.09 394 27.34	7 523. 8 512. 4 505.	超 比 2	26.50 27.02 27.51	23.04	99 37.2 04 37.4 33 38.3	2 1.31 3 1.34	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	366.4	4 000 4 180 5 359	25 25	10.3 11.8 11.2	1.39	1.23	1.28	0.18 0.22 0.23	7.0 7.0 0.6	0.21 11 0.20 19 0.15 15	118. 300. 194. 296. 154. 149.	0. 0.01 60.38 90.10	288 6.6.6	-0.76 -0 -0.73 -0 -0.35 -0	-0.15 -0.11 -0.46
3 RUNS	27.23	3 513.	. 174.	. 27.01	1 23.15		37.6 1.32	12 774.	366.4	•	182	11.1 1.21		1.18 1.24 0.21 BOWEN RATIO=	1.24 RATIO	0.21 ₽=	0.7 0.19 0.63	.19 155.	5. 248. 1. 70.		0.16 -0.0	0.19 0	-0.24 0.16
DW-DE LINE	***																						
600 ' AGL 18 12 40 509 18 22 35 592 18 34 42 524	509 29.98 592 32.26 524 30.43	8 506. 8 526. 3 514.	8.8.5. 7.7.	28.64 28.64 28.64	4 23.39 5 23.40 2 23.45	39 34.8 40 34.8 45 34.9	.8 1.56 .8 1.57 .9 1.59	6 895. 7 892. 9 898.	364.7	3 260	191 193 189	9.3 10.3	1.01	1.11	0.9%	0.17	1.2 0.36 1.1 0.33 0.9 0.40		70. 395 82. 365 62. 400	3950.36 3650.35 4000.27	233	-0.30 -0 -0.38 -0 -0.35 -0	-0.27 -0.88 -0.42
3 RUNS	30.89	9 515.	. 177.	. 29.17	7 23.41	41 34.8	.8 1.57	7 895.	364.0		191	10.0	0.98	1.10 0.95 0.18 BOWEN RATIO=	2.95 RATI	8. 1 8	1.1 0.36 0.18		71. 387. 8. 15.	70.33 5. 0.04		0.34 -0	-0.52
100 ' AGL 18 45 10 5 18 55 55 5 19 06 17 5	530 29.58 509 30.41 537 29.50	386. 1 385. 0 389.	%%.≿ %	31.15	5 24.02 5 24.30 5 24.09	02 35.3 30 35.5 99 35.5	.3 1.78 .5 1.79	78 891. 79 896. 30 882.	. 362.6 . 361.7 . 362.3	6 261 7 098 3 261	194 192 194	9.8 4.8 5.5	1.43 1.44 1.45	1.54 (1.59 (1.37 (0.82	0.27 0.27 0.28	4.4.4.	0.52 9 0.57 6 0.56 9	98. 404. 69. 480. 96. 381.	4040.35 4800.31 3810.25		-0.46 -0 -0.51 0	-0.46 0.35 -0.32
3 RUNS	29.83	3 387.	×.	. 31.35	5 24.14	14 35.4	4 1.79	°9 890.	362.2	~	193	8.9	1.44	1.50 0.82 0.27 BOWEN RATIO=	3.82 RATI	0.27	1.3 0.55 0.21		88. 422. 13. 42.		-0.30 -0.0	0.48 -0	-0.14
EN-ES, INTERCOMP WITH LE (SOME	FRCOMP	VITH LE	MOS) :		TUDE	ALTITUDE EXCURSIONS AT	SIONS	AT S	START)														

19 25 12 539 26.38 510. 165. 30.95 22.67 42.0 1.27 815. 362.5 182 184 10.6 1.23 1.35 1.27 0.20 0.7 0.40 153. 321. -0.18 -0.16 -0.23

SGP FLIGHT 12. 1 NRC C-FPOK, FILE OARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 01-JUL-97 PRINT DATE 01-JUL-97

DETRENDED		RUN A	RUN AVERAGES	S								RMS					ឋ	CORRECTED	O FLUXES	S	
ST GMT SEC DIST	PALT RALT		TEMP DEWPT PRTS GRN NETRD	DEWPT	r PRT5	S	NETRO	LICOR	₩ FDGL	QNIA 1		UGEL VGEL		VEP.	POT	RCO2 RH20	50 MT	3	Š	3	704
KINGFISHER RUNS																					
16 17 42 418 26.85 19 09 59 549 27.35	382. 390.	##.	74 34	21.28	3 39.9	1.43	.34 21.28 39.9 1.43 731. .48 20.40 44.6 1.37 846.	357.4 355 354.7 184	355	221 204	8.0 1	1.24 1	8.3	.82	.39	8.0 1.24 1.35 0.82 0.27 1.2 0.25 104. 10.6 1.67 1.68 0.90 0.39 0.9 0.36 148.	25 16 14 14	3. 2%.	0.25	-0.25 -0.41	-0.34
2 RUNS 27.10	386.	31.	32.91	20.8	42.3	1.40	20.84 42.3 1.40 789.	356.1	_	211	9.2 1.46	1.46.1	1.51 0.86 0.3	.86 (.33	1.51 0.86 0.33 1.1 0.31 126. 242.	31 12	26. 242.	0.23	-0.23 -0.46	-0.36
DW-DE LINE												•		<u> </u>		;	j			5	5
100 FT																					
16 37 56 372 22.56 16 50 59 540 30.55 18 41 14 490 29.88 18 50 31 535 29.40	383. 383.	ង្គង្គង	31.97 32.05 34.32 34.31	20.97 20.62 20.62 20.53	7 34.4 7 34.9 2 38.0 3 37.8	34.4 1.62 34.9 1.90 38.0 1.73 37.8 1.75	803. 826. 896.	357.7 356.6 355.1 354.6	262 262 1 099 5 260	200 198 200 200	7.7 1.42 8.5 1.36 9.9 1.55 11.1 1.61	1.42 1.36 1.55 1.61 1.61	6	£ 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2,2,2,2	1.30 0.77 0.23 1.0 0.39 1.40 0.79 0.26 1.4 0.48 1.43 0.87 0.24 1.0 0.50 1.51 0.89 0.24 1.0 0.45		77. 336. 78. 368. 73. 368. 83. 412.	. 0.25 . 0.37 . 0.24	-0.35 -0.44 -0.53	-0.26 -0.35 -0.37 -0.35
	386.	*	33	20.81	1 36.3	7.73	5 858.	356.0		198	9.3 1	1.49 1	14.	8.0	77.	1.49 1.41 0.83 0.24 1.1 0.46		78. 371.		87.0-	-0.33
0.5 21												_	N P P P P P P P P P P P P P P P P P P P	5 5	<u> </u>	17:		;			5
17 03 36 467 29.15 17 13 49 561 30.41 18 19 21 490 30.64 18 29 19 590 31.04	784. 788. 852. 853.	460. 466. 532. 531.	10101010	1.01 1.01 1.03 1.03 1.03	8 35.1 1 37.2 2 37.6	4.1.5 4.1.5 4.1.5	28.18 19.10 34.6 1.49 832. 3 28.18 19.18 35.3 1.50 850. 3 29.07 18.91 37.2 1.41 903. 3 29.16 18.82 37.6 1.41 891. 3	356.4 356.8 356.9 356.5	4 100 8 261 9 100 5 259	202 204 205 205	10.0 11.5 10.8 12.6	0.96 1.23 1.28 1.07	5.1.2 5.1.2 5.1.7 1.28	0.92 0.98 0.92	51.0 0.15 0.13	3 1.25 0.92 0.17 0.9 0.44 3 1.25 0.99 0.19 1.0 0.52 - 3 1.29 1.02 0.15 0.6 0.46 - 7 1.16 0.92 0.13 0.6 0.49 -	52 -3 46 -2 49 -1	35. 340. -33. 519. -28. 479. -11. 475.	0.23 0.28 0.19 0.18	-0.13 -0.13 -0.29	-0.11 -0.54 -0.19 -0.48
4 RUNS 30.31	819. 497.	497.	28.58	19.00	0 36.;	36.2 1.45	5 869.	. 356.6	40	202	11.2 1.13		1.21 ROUFIN	0.96 PATT	0.16	1.21 0.96 0.16 0.8 0.48 ROUFN PATTO = -0.02		-9. 453.	0.22	0.18	-0.33
0.8 21												-			.	1		} :			2
17 31 60 449 31.54 1117. 8 17 41 41 622 30.54 1122. 8 17 54 21 511 34.77 1118. 8 18 06 45 630 31.80 1115. 8	1117. 1122. 1118.	809. 813. 807. 805.		16.0 15.9 16.5	26.35 16.01 35.2 1.39 8 26.54 15.90 35.8 1.40 8 26.59 16.47 35.8 1.38 9 26.79 16.55 36.5 1.37 8	0.000 	9 887. 0 889. 8 901. 7 897.	358.1 358.3 357.7 357.8	1 098 3 261 7 100 8 261	223 223 223 221 221		0.96 1.07 1.10 0.97	1.43 1.89 1.47	0.83 0.85 0.70	0.43 0.52 0.39	13.5 0.96 1.43 0.81 0.43 0.7 1.12-104. 14.1 1.07 1.89 0.83 0.52 0.8 1.33 -89. 12.3 1.10 1.47 0.85 0.39 0.7 1.09 -25. 12.7 0.97 1.42 0.70 0.34 0.6 0.90 -37.	12-10 33 -8 39 -2 99 -3	4. 721. 9. 439. 5. 321. 7. 241.	0.09	-0.27 -0.24 -0.17 -0.09	-0.62 -0.38 -0.10
4 RUNS 32.16	1118.	809.	32.16 1118. 809. 26.57 16.23 35.8 1.38 894. 358.0	16.2	3 35.6	8 1.3	8 894.	. 358.	0	225		1.03	1.55 BOWEN	0.80 RATI	0.42	0.7 1.	11 -6	4. 431 3. 182	13.1 1.03 1.55 0.80 0.42 0.7 1.11 -64. 4310.07 -0.19 -0.33 BONEN RATIO= -0.15 33. 182. 0.02 0.07 0.19	-0.19	-0.33

1 MRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 02-JUL-97 PRINT DATE 02-JUL-97 SGP FLIGHT 13.

			<u> </u>	85 PZ	ΥΒ Ο ΥΒΟ Έν	ro G	47.80	<u>5</u> 9
	707		0.22 0.23 0.34 0.34 0.34 0.35 0.35 0.35	-0.28 0.05	0.02 0.08 0.06 0.06 -0.19 -0.19	-0.15 0.22	-0.14 -0.37 -0.38 -0.60	-0.37 0.16
s	3		0.00 0.03 0.03 0.04 0.00 0.00 0.00 0.00	0.05	0.03 0.03 0.03 0.03 0.03	-0.01 0.12	-0.12 -0.10 -0.05 -0.08	-0.06
FLUXES	ž		0.28 -0.39 -0.43 -0.45 -0.45 -0.45 -0.52	0.10	0.03 0.09 0.19 0.19 0.16 0.47	-0.19 0.16	-0.08 -0.07 -0.26 -0.43	-0.21 0.15
CORRECTED	3		131. 246. 276. 277. 277. 277. 316. 316. 377.	72.	145. 332. 332. 189. 202. 202. 516.	168. 246.	215. 211. 357. 610.	348. 162.
8	5		8.44.8.8.5.5.5.48.8.8.8.8.8.8.8.8.8.8.8.	5. 5.	15. 2. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	8.8	.34. -41. -8.	-23. 15.
	RH20		0.24 0.33 0.44 0.34 0.44 0.44 0.44	1.7 0.37 0.29	0.74 0.64 0.34 0.32 0.35	09.0	0.84 0.78 0.49 0.49	. 0.9 0.65 -0.06
	RC02		449797787960	1.7 0.29	0.01 0.00 0.00 0.00 0.00	0.9	8.0.0	9.9
	<u>70</u>		0.23 0.23 0.23 0.23 0.24 0.25 0.25	23	0.32 0.32 0.32 0.42 0.12 0.12	0.33 ₩	0.33 0.33 0.10 0.11	Σ.α
	e e		0.55 0.65 0.65 0.65 0.65 0.65 0.65 0.65	0.99 0.64 0.3 Bowen Ratio=	88.000000000000000000000000000000000000	0.97 0.78 0.33 BOWEN RATIO=	0.65 0.64 1.03	0.89 0.79 0.23 BOWEN RATIO=
	VGEL 4		0.81 0.97 0.99 0.98 0.98 0.98 0.98 0.10 0.10 0.10	0.99 0.64 Bowen Rati	1.14 1.20 1.18 1.21 0.73 0.73 0.73 0.73	.97 O	0.03 0.98 0.85 0.78	.89 O
RMS	UGEL VI		0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	1.02 0 B	0.90 1.38 1.17 1.17 1.17 1.00 0.95 0.95 0.95	0.90	1.06 01.1	1.09 0.0
	ອ		24484848484848484848448448448448448484848	3.1 1.	6.8 6.8 7.2 7.2 7.3 7.3 7.0 6.0 6.0	4.2 0.	3.7 1. 2.9 1. 2.5 1.	2.7 1.
	WIND							
	HDGL		1 241 2 241 2 247 2 247 3 244 1 224 3 258 3 201 3 3 201	242	622 524 622 524 622 524 622 524 622 524 622 524 622 624 623 624 624 624 624 624 624 62	258	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	273
			8 271 3 097 4 272 9 096 9 271 9 271 6 095 4 273 4 093	5	4 272 295 1 1 205 1 1 205 1 1 205 1 1 205 1 1	1	4 272 7 092 3 272 5 093	0
	ב		363.8 362.4 362.4 360.9 350.4 350.4 358.4 358.4	360.5	363.4 363.2 362.1 362.1 360.7 360.6 359.7	361.5	360.4 360.7 359.3 359.5	360.0
	NETRO LICOR		532. 546. 578. 612. 685. 685. 731. 745. 824. 821.	706.	563. 576. 630. 641. 743. 748.	667.	774. 785. 818.	801.
	GRN		2.	2.16	882.83.88	1.87	5.1.2 2.1.3 2.4.3	t. 1
	PRT5 (33.05.2 33.05.2 33.05.0 35.0 37.0 37.0 37.0	34.3	330.5	32.8	34.9 35.6 36.7 36.9	36.0 1
	P P		44444444444444444444444444444444444444				27.2% 27.3% 27.3%	
Š	DEWPT		21:54 21:56 20:30 20:30 20:43 21:43 21:43 21:43 21:43	21.31	19.32 19.73 19.14 19.71 20.43	19.57	19.12 18.84 19.71	19.31
VERAGES	TEMP		28.28 28.28 28.28 28.27 28.28 31.39 31.39 31.39 31.39	29.73	25.30 26.22 26.22 26.22 26.04 26.04 26.55	26.04	25.55 25.55 25.55 25.55	25.53
S S	RALT		**********	32.	388. 338. 401. 401.	393.	587. 586. 592. 588.	588.
	PALT		\$ 5 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	465.	797. 792. 798. 800. 810. 812.	803.	986. 988. 992.	8.
	DIST		77.74.75 77.74.75 77.75	14.62	15.11 14.92 14.83 14.38 14.98 15.11	14.83	14.71 14.84 15.73	15.03
_	SEC		270 232 278 278 263 263 263 264 265 265 265		232 232 232 242 253 253 253 253 253 253 253 253 253 25	-	265 263 263 263 263 263 263 263 263 263 263	-
DETRENDED	E	EN EN	22 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	RUNS	832853	RUNS	2225	RUNS
DETR	ST	EL RENO 100 FT	74 74 74 74 74 74 74 74 74 74 74 74 74 7	12 RUI 0.8 ZI	15 03 15 15 09 15 15 26 16 01 16 27	න ක	16 35 16 42 17 09 17 15	4
				_	•			

SGP FLIGHT 14. TAPE 1 1 NRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 02-JUL-97 PRINT DATE 03-JUL-97

DETRENDED	₽	RUN AVI	/ERAGES	s								RMS	4.5					SOR	CORRECTED	FLUXES	s,	
ST GMT SEC DIST	PALT RALT		TEMP	DEWPT PRTS	PRTS		NETRO	GRN NETRD LICOR	R HDGL		ON I A	UGEL	VGEL	Æ	ğ	RC02	RH20	5	3	ş	3	707
EL RENO, EVENING TRANSITION	ANSITIO	×																				
100 FT																						
23 26 22 250 14.56 23 31 53 254 14.66	469. 3 468. 3	33. 3	4.57	19.17 19.26	32.3	3.19	319.	34.57 19.17 32.3 2.71 319. 353.6 269 34.53 19.26 32.2 3.19 318. 353.2 097	6 265 2 097	51 7		4.2 0.89 0.89 0.47 0.17 1.2 0.50 4.1 0.95 0.82 0.45 0.19 1.1 0.42	0.89	0.47	0.17	1.2	0.50	. 8	207. 168.	-0.14	7. 2070.14 -0.08 8. 1680.10 -0.11	-0.27 -0.27
00 03 49 245 14.60 472. 00 09 16 262 14.64 468. 00 14 52 251 14.60 470. 00 20 22 262 14.64 468. 00 55 48 245 14.56 471. 01 01 12 258 14.75 469. 01 06 41 248 14.44 470. 01 12 05 256 14.76 469. 6000' MSL.		%	34.54 19.70 34.31 20.41 34.19 20.63 34.09 20.87 33.53 21.64 33.53 21.64 33.15 22.11 32.83 22.29 20.99 14.24	19.77 20.63 20.63 20.89 22.13 22.14 22.23 22.23	20.2 20.2 20.2 27.4 30.2 30.2 30.3	30.5-0.02 30.2 3.55 30.2 3.55 29.8 3.19 29.5 4.76 27.910.47 27.2 7.12 27.2 3.65 30.2 1.65 30.3 1.66	213. 211. 114. 180. 31. 35. 215.	34.54 19.70 30.5-0.02 213. 355.7 268 169 34.31 20.41 30.2 3.55 211. 355.1 098 160 34.19 20.63 29.8 3.19 114. 355.1 267 171 34.09 20.87 29.5 4.76 180. 354.9 098 164 33.63 21.64 28.112.13 31. 356.9 268 176 33.31 21.99 27.910.47 66. 356.6 099 167 33.15 22.11 27.4-7.12 11. 356.7 267 173 32.83 22.29 27.2 3.65 35. 357.2 099 168 20.99 14.24 30.2 1.65 215. 355.9 267 219 20.81 14.56 30.3 1.66 222. 355.9 099 212	268 1 098 1 098 9 098 9 268 7 267 2 099 9 267 9 267	3 169 3 160 3 164 3 176 3 176 9 167 9 168 9 168		0.70 0.81 0.77 0.76 0.72 0.73 0.73 0.47	0.72 0.63 0.64 0.49 0.52 0.52	0.35 0.37 0.35 0.35 0.35 0.35	2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00	0.5	4.8 0.70 0.72 0.36 0.17 0.6 0.35 5.0 0.81 0.63 0.39 0.23 0.7 0.39 5.7 0.77 0.64 0.37 0.18 0.5 0.35 5.3 0.76 0.66 0.35 0.18 0.6 0.31 5.3 0.74 0.51 0.29 0.17 0.9 0.18 5.0 0.72 0.49 0.39 0.20 1.0 0.31 5.3 0.70 0.49 0.31 0.18 1.1 0.23 5.1 0.73 0.52 0.33 0.17 1.2 0.17	54444555	59. 68. 100. 17. 37. 30. 70.	0.03 0.05 0.06 0.06 0.09 0.00 0.00	10. 59. 0.03 -0.06 -0.20 -6. 68. 0.02 -0.11 -0.21 -6. 100. 0.03 -0.11 -0.23 -9. 89. 0.04 -0.09 -0.22 -3. 12. 0.05 -0.06 0.00 -10. 37. 0.06 -0.07 -0.09 -10. 24. 0.09 -0.07 -0.09 -10. 30. 0.10 -0.08 -0.09 -639. 0.00 -0.04 -0.22 -4. 700.03 -0.06 0.01	0.22 0.22 0.03 0.00 0.00 0.03 0.03
9000 HSF																						
00 40 35 334 18.43 2118. 00 48 06 234 15.89 2120.			8.55	12.17 11.43	7 28.	3.1.6	3 -48.	18.55 12.17 28.1 1.68 -48. 357.5 268 236 18.77 11.43 28.0 1.60 27. 357.5 097 233	5 26	8 236 7 233		0.33	0.23 0.21	0.18	0.07	20.4	7.2 0.33 0.23 0.18 0.13 0.4 0.49 6.1 0.34 0.21 0.17 0.07 0.4 0.27		751. 550.	0.00	9.0	0.17

SGP FLIGHT 15. NO NOVATEL 1 NRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 03-JUL-97 PRINT DATE 03-JUL-97

DETRENDED		RUN AVERAGES	ÆRAGE	S							RMS	v				_	CORRECTED	TED FLUXES	KES	
SEC DIST	PALT RALT	SALT	TEMP	DEWP1	PRT5	GRN	(ETRD	EMP DEUPT PRTS GRN NETRD LICOR HDGL	HDGL	VIND	UGEL	UGEL VGEL WEP		<u>8</u>	POT RC02 RH20		3	3	3	701
KINGFISHER LINE																				
26.63	381.		11.39	21.8	41.7	1.40	20.	55.2	354		7 1.48	1.51	8.	0.30	1.10	27 1	54. 24	50.2	6 -0.38	-0.45
02 55 425 26.98 31 22 523 24 05	383.	32.5	32.15	2.45	32.15 24.01 42.5 1.39 727. 3 32.15 21.68 44.5 1.38 792. 3 33.00 30 30 42 4 37 856 3	1.38	26.	7.7. 5.6.3	355 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	220 6.	6.5 1.55 1.41 0.79 0.33 1.0 0.28 153. 6.4 1.48 1.48 0.80 0.33 0.9 0.36 144. 7 7 1 77 1 77 6 77 6 6 6 6 7 70 70 6 6 7 70 70 70 70 70 70 70 70 70 70 70 70 7	1.48	183	20.33	000	38.8	53. 247. 44. 217.		-0.26 -0.33 -	-0.41 -0.33
	8			9		* *	920	933.0	<u>8</u>).r	3.	. s.	0.40))	7 70.	. 50	ř	0.38	-0.32
RUNS 26.90	383.	32. 3	32.27	21.45	21.49 44.0 1.38	1.38	776.	354.5	72	224 6.	6.7 1.57	1.51 BOWE	1.51 0.82 0.3 BOWEN RATIO=	0.34	0.64	88	1.51 0.82 0.34 1.0 0.38 163. 254. BOWEN RATIO= 0.64 23. 33.	40.22 3. 0.04	.0.7 9.0	-0.38
16 41 15 438 28.13 1172, 864. 16 50 28 549 29.89 1175, 867.	5.5. 3.5.	%4. ? %7. ?	3.42	19.38	23.42 19.38 39.5 1.24 768. 23.62 19.45 40.7 1.25 777.	1.24	73. 13.	354.7 354 2 355.0 185 2	354 23 185 23	229 7. 223 6.	3 1.09	1.26	1.10	0.14 0.14	0.70	. 72	7.3 1.09 1.26 1.10 0.14 0.7 0.63 -13. 822. 6.8 1.00 1.34 1.16 0.14 0.7 0.74 -7. 915.	2. 0.21	1 -0.50	0.76 0.63
18 11 11 528 27.75 1545. 18 21 36 406 27.70 1548.	545.	0. 21 0. 21	8.5	14.55 15.82	42.4	1.18	873. 872.	1.99 14.55 42.4 1.18 873. 355.2 185 1.79 15.82 43.0 1.19 872. 355.2 354	185 2' 354 2'	216 8. 215 9.	9 1.66	1.39	 2.8	0.74	1.4 2	8.3	29. 86.	70.2	8.9 1.66 1.39 1.04 0.74 1.4 2.79-104.13070.28 -0.06 9.6 1.29 1.35 1.06 0.40 1.2 1.98 -29. 8670.17 0.17	0.01
DW-DE LINE																				
17 20 46 468 30.88 1542. 17 30 33 574 31.04 1546.	542.	00	21.08	15.54 15.5	37.3	1.30	856. 869.	0. 21.08 15.54 37.3 1.30 856. 355.3 097 225 0. 21.31 15.51 37.8 1.32 869. 355.8 263 224	263 2		7 1.12	1.27	9.0	0.66	1.0 2 0.9 2	67.	267. 43. 49	30.1 50.1	9.7 1.12 1.27 0.94 0.66 1.0 2.49 26730.12 -0.27 -0.16 9.5 1.32 1.36 0.90 0.58 0.9 2.42 -43. 4950.13 -0.16 -0.27	-0.16 -0.27
17 42 46 488 30.36 17 52 11 540 29.71	384. 387.	32. 3	33.19 53.20	20.9	32. 33.19 20.91 42.0 1.81 34. 33.20 20.78 41.7 1.85	1.81	865. 857.	354.7 096 354.0 264	264 2	220 7. 210 6.	1 1.50 9 1.69	1.56	0.82 0.78	0.2%	1.10	.51	7.1 1.50 1.56 0.82 0.29 1.1 0.48 126. 341. 6.9 1.69 1.67 0.78 0.29 1.2 0.51 115. 357.		-0.29 -0.40 -0.21 -0.33 -0.43 -0.25	-0.21
RUNS 30.03	386.	33. 3	33.19	20.8	33.19 20.85 41.9 1.83	1.83	8.1.	861. 354.4	70	215 7.	7.0 1.60	1.62 BOVE	0.80 FRAT	0.29 Io=	1.2 0 0.35	.50 1	21. 34	90.3 8. 0.0	1.62 0.80 0.29 1.2 0.50 121. 3490.31 -0.42 -0.23 BOWEN RATIO= 0.35 6. 8. 0.02 0.01 0.02	-0.23

SGP FLIGHT 16. NO NOVATEL 1 NRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 04-JUL-97 PRINT DATE 04-JUL-97

DETRENDED		RUN AVI	VERAGES	S.							RMS					8	ECTED	CORRECTED FLUXES		
GMT SEC DIST	PALT RALT	RALT	TEMP	DEWPT	PRT5	TEMP DEUPT PRT5 GRN NETRO LICOR HDGL	TRO L	ICOR H		VIND	UGEL	UGEL VGEL WEP		POT RC	RCOZ RH20	5	3	ž	3	704
KINGFISHER, 100 FT																				
39 55 503 26.95 49 41 434 26.74 29 58 491 26.97 39 28 438 26.75 14 38 487 26.72 23 60 441 26.79	375. 380. 381. 381. 382.	83.33.33	24.15 11.70 35.0 1 24.21 11.38 35.0 1 24.88 11.12 37.6 1 24.96 11.04 37.1 1 25.49 10.97 37.8 1 25.49 10.48 37.8 1	11.70 11.38 11.12 11.04 10.97	35.0 35.0 37.6 37.1 37.8 37.8	444444	77. 38. 36. 36. 70.	877. 350.1 002 (874. 349.9 177 (836. 349.6 001 (836. 349.0 178 (776. 349.7 002 (776. 349.2 178 (770. 349.2 178	002 029 177 027 001 022 178 031 002 030 178 022		4.7 1.41 5.5 1.51 4.2 1.42 5.1 1.58 3.8 1.56 4.2 1.82	1.58 1.54 1.55 1.39 1.23	2.80 2.80 2.80 2.80 2.81	0.34 0.34 0.34 0.34 0.34	1 1.58 0.81 0.33 1.0 0.30 18 1 1.54 0.79 0.28 0.8 0.8 0.26 14 1.65 0.80 0.34 0.8 0.27 17 17 18 1.39 0.81 0.31 0.8 0.28 14 1.56 0.81 0.34 0.8 0.24 16 1.56 0.81 0.34 0.8 0.24 16 1.23 0.80 0.30 0.8 0.23 11	181. 142. 171. 165. 155.	383. 267. 303. 253.	-0.28 -0.33 -0.54 -0.20 -0.29 -0.38 -0.13 -0.10 -0.43 -0.18 -0.17 -0.40 -0.16 -0.29 -0.42		0.54 0.38 0.43 0.44 0.42
RUNS 26.82	380.	32.	24.86	11.12	36.7	24.86 11.12 36.7 1.44 828. 349.6	28. 3	9.65	027		1.55	1.49 (BOWEN	0.80 (RATIO	0.32 0 D= 0	4.6 1.55 1.49 0.80 0.32 0.8 0.26 164. 2910.19 -0.21 -0.44 BOWEN RATIO= 0.56 12. 48. 0.05 0.10 0.05	1 <u>8</u> .	291.	-0.19 -	0.21	0.44
0.8 21																				
01 31 541 28.65 12 12 456 29.11	1274. 1275.	. ·	15.07 15.37		34.5 35.2	9.55 34.5 1.29 839. 349.6 002 024 9.23 35.2 1.32 838. 350.1 177 028	38.	349.6 0 350.1 1	302 02 177 02		1.21	1.20	1.37	0.12 0	5.7 1.21 1.20 1.37 0.12 0.5 0.23 6.2 1.21 1.19 1.45 0.12 0.6 0.23		287.	62. 2870.18 -0.23 -0.17 72. 3330.12 -0.13 -0.29	0.23	0.17
55 15 480 26.47 04 40 439 28.31	1630. 1631.		12.28 12.41		35.9	8.10 35.9 1.30 768. 349.8 001 8.16 35.8 1.31 772. 350.2 177	288	549.8 (550.2 1	001 024 177 025		1.14	0.96	0.97	0.14 0	4.9 1.14 0.96 0.97 0.14 0.9 0.31 5.8 1.22 0.91 0.88 0.13 0.8 0.28	40.	. . 5.	0.02 0.24 -	0.24	-0.02
RENO																				
42 20 246 14.50 47 51 261 14.89 53 17 248 14.44 58 50 261 14.78	47. 471. 473.	32. 33.	24.15 24.24 24.36 24.35	13.07 13.02 13.28 12.91	30.1 30.0 29.8 29.8	. 24.15 13.07 30.1 2.20 77 24.24 13.02 30.0 2.24 77 24.36 13.28 29.8 2.23 77 24.35 12.91 29.8 2.29 7	776. 771. 757.	776. 347.9 275 0 771. 347.9 091 0 757. 347.3 275 0	275 045 091 028 275 043 091 029		1.43	1.46 1.43 1.46 1.31	6.7 6.7 6.67	0.21 1 0.21 2 0.24 2 0.22 1	3.0 1.30 1.46 0.70 0.21 1.6 0.31 2.9 1.43 1.43 0.70 0.21 2.0 0.38 2.9 1.47 1.46 0.72 0.24 2.0 0.40 3.4 1.49 1.31 0.67 0.22 1.6 0.37	22.22	88.58	-0.42 -0.13 -0.75 -0.18 -0.66 -0.22 -0.43 -0.04	0.13	-0.27 -0.47 -0.60 -0.32
RUNS 14.65	471.	32.	24.27	13.07	29.9	4.27 13.07 29.9 2.24 763. 347.7	763.	347.7	60	036 3.0	1.45	1.42 BOWEN	0.70 RATI	0.22 1	3.0 1.42 1.42 0.70 0.22 1.8 0.37 BOWEN RATIO= 0.27		349. 54.	95. 3490.56 -0.14 -0.42 4. 54. 0.14 0.07 0.13	0.07	0.42

SGP FLIGHT 17. RADIATION ADJUSTE 1 NRC C-FPOK, FILE OARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 05-JUL-97 PRINT DATE 07-JUL-97

DETRENDED			SCN A	VERAGES	S:								RMS	44					200	CORRECTED	FLUXES	S		
ST GMT SEC	DIST	PALT RALT	RALT	TEMP	TEMP DEWPT	PRT	SGR	NETRI	PRTS GRN NETRD LICOR	R HDGL		VIND	UGEL VGEL		S S	2	RC02	RH20	5	3	£	3	707	
NOTE: *** RADIATIONNCORRECTED	DIATIO	NCORR	ECTED	TO JULY	JLY 5	CALIBRATION	3RAT I	₹																
INTERCOMP WITH LONG-EZ,	H LONG	-EZ, C	-SB -S	BN RUN	I																			
16 12 06 550 33.51	33.51	495.	₹	21.69		13.86 33.8 1.74	3 1.7	4 510.		347.7 016 160	8	4.2	1.04	4.2 1.04 1.08 1.14 0.18 2.1 0.33	1.14	0.18	2.1	0.33	113.	241.	-0.33	-0.08	-0.56	
CART LINE, CS	CS-CN																							
16 36 40 477 17 03 46 550 17 14 16 475 17 23 42 546 17 34 23 488	23.52 23.65 23.65 23.65	360. 357. 358. 357.	****	75.75 74.55 74.55 74.55 74.55	13.91 13.76 13.59 3.64	37.0	4 1.60 11.62 11.59 7 1.59	2 585. 7 600. 5 596. 5 596.	349.3 349.6 349.6 349.6	3 000 7 178 6 000 8 178	<u> </u>	2.4.4 K	75.1.35 26.1.35 26.1.35	23435	0.82 0.84 0.84 0.76	0.30	4,4,6,6,4	0.32	£ 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	175. 175. 194. 181.	-0.45 -0.31 -0.17	-0.15 -0.22 -0.05 -0.05 -0.05	-0.48 -0.43 -0.37	
5 RUNS	29.62	359.		24.39			-	9 591	. 349.7					1.50 0.81 0.32 BOWEN RATIO=	0.81 RAT	0.32		0.3	171.		-0.30		-0.40	
LINES AT VERMA GRASSLANDS	A GRAS	SLANDS	,																					
VARIOUS HEADINGS	NGS																							
18 18 53 58 18 22 51 70 18 25 04 65 18 27 19 66 18 29 25 68 18 35 44 66	3.38 3.92 3.03 3.05	409. 403. 407. 405. 413.	######	222222 222222 2323 2423 2533 2533	15.39 15.19 15.22 15.22 15.31	32.3 32.6 32.6 33.1 32.1	3.03 5.3.03 5.3.04 1.3.05	55 635. 7 643. 7 641. 7 640.	343	.3 179 .4 206 .4 033 .5 224 .2 057 .8 303	24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	847444 51747	7.7 0.7 0.65 0.88	0.97 0.98 0.98 1.07	85.88.38 7.58.32 7.58.33	0.20 0.18 0.20 0.15 0.22	9.7.7.4.8	0.28 0.28 0.28 0.21 0.24	33.38.E	305. 266. 304. 221. 254.	0.50 0.50 0.50 0.50 0.50	-0.05 -0.08 -0.02 -0.12 -0.31	0.28	
6 RUNS	3.72	. 205	33.	23.12	15.26	5 32.8	8 3.03	3 641.	343	ĸ.	152	4.5	0.92	1.06 0.69 0.19	0.69	. 5 5. 15		1.6 0.26	%;	297.	-0.69	0.0	-0.37	
EAST/WEST LINE AT	NE AT	VERMA	SITE												<u> </u>	5			<u>.</u>	6	<u>*</u>			
18 39 53 55 18 41 56 59 18 44 05 57 18 46 11 58 18 48 35 54 18 50 37 57 18 52 50 56	3.37 3.37 3.38 3.38 3.38 3.38	60.000 60.0000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000	88.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	22.23.23.23 22.23.23.23 22.25.23 23.25.25.23 23.25.23 23.25.23 23.25.23 23.25.23 23.25.23 23.25.23 23.	15.25 15.25 15.20 15.00 15.00	33.3.5.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	2 2 2 2 2 2 2 2 2 3 4 2 2 2 3 4 3 2 2 3 4 3 2 3 4 3 4	6 62.0. 7 6 62.1. 7 6 62.1. 7 6 62.1. 6 62.1. 6 62.1.	342.8 342.9 342.9 342.9 342.5 343.1	266 266 266 266 266 266 266 266 266 266	2827 85 85 85	4.6.6.6.4.6 6.6.6.6.4.4.4.4.4.4.4.4.4.4.	0.78 0.68 0.60 1.06 0.85	1.38 1.28 1.28 1.38 1.38 1.38 1.38	0.67 0.73 0.73 0.68 0.68	0.22 0.22 0.23 0.23	64.60 8 V. W.	0.28 0.33 0.37 0.33 0.33	%1.2. 112. 113. 113.	317. 320. 374. 353. 417. 361.	0.63 0.63 0.78 0.78 0.85 0.60	-0.18 -0.21 -0.17 -0.08 -0.18	6.55 6.05 6.05 6.05 7.00 6.05 7.00 6.05	
7 RUNS	3.33	408.	%	23.36	15.16	5 33.5	5 2.99	9 639.	. 342.8	∞	5	3.6	0.77	1.12	Ο.	0.21	9.6	0.30	96	350.	5.0-	-0.14	-0.39	_
LOW RUN OVER GRASSLAND WEST	GRASS	LAND 's	ÆST 0	OF VERMA SITE	A SII	<u>u</u>								80 M	<u>₹</u>	5	7.	_	<u>.</u>	ξ.	8			
18 54 43 142	8.55	417.	37.	23.62	14.99	35.3		2.74 620.		344.7 232	204	1.8	1.03	1.03 1.34 0.75 0.22	7.0	0.22		1.2 0.30	124.	260.	-0.58	-0.08	-0.08 -0.43	

SGP FLIGHT 18 SMOKE 1 NRC C-FPOK, FILE GARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 05-JUL-97 PRINT DATE 05-JUL-97

NOSEBOOM TEMPERATURE DATA USED MEAN WIND DIRECTION AND SPEED FROM LITTON

	20	0.01
	-	82
ES	5	99
CORRECTED FLUXES	UGEL VGEL WEP POT RCOZ RHZO WT WO WC UM WOZ	15.47 0.33 30.2 1.44 778. 358.1 197 076 2.8 0.42 0.51 0.66 0.3712.7 0.46 471370.64 -0.08 14.82 1.09 32.8 1.74 741. 350.9 191 101 5.1 0.13 0.20 0.13 0.09 0.5 0.16 -5. 15. 0.02 -0.01
RECTED	3	-137. 15.
Š	5	47. -5.
	RH20	0.46
	C02	2.7
	Ž T	.371
	4	
	SEL W	20 05:
RMS	EL V	42 0 13 0
	១	8 0 -
	QN I.	2 5
		7 07
	훈	91 9
	0217	358. 350.
	TEMP DEWPT PRT5 GRN NETRO LICOR HDGL WIND	778.
	GRN	1.44
	RT5	2.8
	PT P	8.8 8.8
SES) DE	
AVERAGES	TEM	15.4
Z.	RALT	。。
	PALT	1897.
	DIST	5.2%
	SEC	52€
NOED	¥	72
JETRENDED	ST GMT	20 35 54 121 20 47 14 79
٠		,,,,,

SGP FLIGHT 19. RADIATION ADJUSTE 1 NRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 08-JUL-97 PRINT DATE 08-JUL-97

			Ø 8 0 4	22		000	<u>0, 0</u>		***	ខ្លួក		750	£3 03		407F	ស ស
	707		-0.39 -0.28 -0.34	ó o		-0.42 -0.40 -0.36	-0.39		000	-0.30		-0.47 -0.41 -0.40	ဝ္ဝ		-0.24 -0.33 -0.47 -0.37	-0.35 0.08
w	3		-0.31 -0.35 -0.29	-0.32 0.02		-0.29 -0.27 -0.26	-0.27 0.01		6.6.8 8.88	-0.30		-0.33 -0.23 -0.26	-0.27 0.04		-0.30 -0.48 -0.45 -0.38	-0.40
FLUXE	ş		-0.21 -0.23 -0.19	-0.21		-0.39 -0.33 -0.31	-0.34		-0.38 -0.31 -0.34	-0.34		-0.19 -0.18 -0.09	-0.15		-0.49 -0.66 -0.67 -0.56	-0.60
CORRECTED	3		176. 186. 159.	174. 11.		245. 190. 253.	23. 28.		270. 274. 297.	280. 12.		206. 194. 228.	209.		351. 400. 452. 408.	403.
8	5		3 4 3	<u>134</u>		164. 17.	110. 27.		138. 133.	140. 7.		208. 193. 221.	207. 11.		110. 119. 112.	115.
	T RC02 RH20		29 1.1 0.21 31 1.0 0.22 30 1.1 0.22	0 1.1 0.22		38 1.4 0.34 27 1.3 0.34 24 1.3 0.36	30 1.3 0.35 0.48		31 1.2 0.32 31 1.0 0.35 33 1.1 0.34	32 1.1 0.34 0.50		0.39 1.1 0.24 0.36 0.9 0.23 0.41 0.9 0.30	.39 1.0 0.26 = 0.99		0.25 1.8 0.54 0.25 1.7 0.38 0.25 1.8 0.52 0.25 1.8 0.46	25 1.8 0.48 0.29
	WEP POT		0.78 0.29 0.78 0.31 0.75 0.30	1.31 0.77 0.3 BOWEN RATIO=		0.77 0.38 0.72 0.27 0.71 0.24	1.40 0.73 0.30 BOWEN RATIO=		0.78 0.31 0.82 0.31 0.82 0.33	1.35 0.81 0.32 BOWEN RATIO=		0.88 0.84 0.94 0.90	1.52 0.87 0.3 BOWEN RATIO=		0.82	1.46 0.79 0.25 BOWEN RATIO=
	VGEL		1.23	1.31 BOWEN		1.50	1.40 BOWEN		1.27	1.35 BOWEN		1.55 1.46 1.54	1.52 BOWEN		1.47 1.40 1.52 1.46	1.46 BOWEN
RMS	UGEL		1.34	1.40		1.51 1.37 1.34	1.41		1.28 1.46 1.38	1.37		3.4.8.	1.63		1.25 1.47 1.30	1.33
	QK I M		8.2 7.7 7.2	7.7		5.7 5.6 5.4	5.6		6.8 7.5	6.9		7.0	6.8		7.6 7.0 7.8 7.5	7.5
			\$ 2 2 3 2 2 3 3 3 4 3 4	233		3 214 5 209 4 208	210		4 206 2 209 3 208	208		3 213 6 215 3 211	213		7 215 9 217 5 215 9 221	217
	₩ HDGL		8 353 4 184 3 354	į,		5 093 3 094 3 094	4		5 264 5 995 5 263	٠.		2 183 8 356 3 183	8 2		.1 267 .9 099 .8 265 .4 099	αį
	LICOR		357.8 357.4 357.3	357.		356.5 356.5 356.3	356.4		356.5 356.6 356.5	356.		357.2 356.8 356.3	356		355 354 354 354	354
	NETRO		495. 494. 512.	500.		472. 391. 451.	. 438.		583. 586.	576.		573.	576.		638. 639.	.079
	GRN		¥.1.4.	1.35		7.33	1.76		1.67 1.69 1.72	1.69		5.1. 8.2. 8.2.	1.2		2.02	2.04
	PRT5		41.0 41.7 42.5	41.7		41.1 40.4 41.1	40.9		43.7 43.5 43.9	43.7		47.0 47.4 47.3	47.2		38.6 38.9 39.2	38.8
W	DEWPT		19.11 18.91 18.69	18.90		16.21 18.18 18.19	17.53		18.37 18.27 18.19	18.28		18.79 18.97 19.04	18.93		18.94 18.56 18.86 19.16	18.88
ERAGE	TEMP		385	1.58		32.30 32.43 32.58	32.44		32.82 33.01 33.18	8.		33.00 33.07 33.21	\$.09		32.12 32.15 32.22 32.22	2.20
RUN AVERAGES	ALT		32.3 32.3 33.3	32. 3		888	32. 3		25.E	31. 33		20. 20. 20.	31. 33		32.33	33. 3
~	PALT RALT	ST SET	381. 380.	380.	_	377. 375.	375.		376. 377. 378.	377.		382. 381. 381.	381.	211	467. 472. 472. 470.	.025
	DIST	E FIRST	26.88 26.65 27.45	26.99	SHADED	29.89 29.87 29.81	29.86		29.77 30.00 29.42	29.73	2ND SET	26.47 27.04 26.61	26.71	LONG EZ	14.73 14.89 14.70	14.71
	SEC	R LINE,	72 56 738 56 738 56	Ñ	PARTLY SHADED	22 26 25 26 26 27 26 27 26 27	Ň	NNIER	22 28 28 28 28 28 28 28 28 28 28 28 28 2	Ň		501 419 506 208	Ñ	III C	272 231 14 285 14 235 14	-
DETRENDED	ST GMT	KINGFISHER	16 12 25 4 16 21 05 4 16 30 25 4	3 RUNS	DW-DE, PAG	16 48 19 4 17 00 16 17 10 19 4	3 RUNS	DV-DE, SUNNIER	17 19 41 17 29 49 4 17 39 03	3 RUNS	KINGFISHER,	17 58 16 18 07 46 18 16 11	3 RUNS	EL RENO WITH	18 33 42 18 39 15 18 44 55 18 50 16	4 RUNS

SGP FLIGHT 20. WASHITA ETC 1 NRC C-FPOK, FILE OARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 09-JUL-97 PRINT DATE 09-JUL-97

DETRENDED			NO.	VERAGES	S							RMS				8	RRECTE	CORRECTED FLUXES		
ST GMT SI	SEC DIST	T PALT	RALT	TEMP	DEWPT	PRT5	DEWPT PRT5 GRN NETRD LICOR HDGL	0 1100	R HOGI	ON IN		UGEL VGEL	i. VEP	POT	RC02 RH20	50 14	8	3	3	707
WASHITA, GE-GW	E-64,																			
500																				
22 57	514 27.30		167.	26.95	9.14	37.0	2.04 508.	363		196	7.5 0.	94 1.0	1.03 1.05 0	0.20	1.7	22 132. 20 119.	272.	-0.49	-0.26 -	-0.54
16 42 33 4	7 25.3	585	167.	27.31	12.34	38.0	88	362.9	333	18	6.70		20.1	0.0 8 t	:: 3	0.20 117		-0.42	. 82.0	0.92
18 46 28 14	20 26.0		<u>\$</u> \$	28.28	19.42	50.1 40.1	2.8	361.6		25 25 26	6.1	3 -	27.1.13	0.18	1.2	27 125.		-0.51	-0.18 -	0.24
5 RUNS	26.31	1 568.	3 6	27.55	16.36	38.5	2.00 541.	. 362.6	90	197	6.6 1.	1.08 1.1 BOL	1.15 1.09 0. BOWEN RATIO=	0.18 0=	1.2 0.24 0.42	24 124. 6.	297.	-0.38	-0.32 -	-0.42
300 -																				
16 52 11 411 2 17 00 40 499 2 17 10 17 420 2	11 25.49 99 26.26 20 26.13	9 511. 6 505. 3 508.	₹8 <u>₹</u>	28.13 28.40 28.58	18.12 20.64 18.34	38.8 39.1 39.3	2.21 553. 2.21 553. 2.05 567.	. 362.7 . 362.2 . 361.9	7 062 2 233 9 062	35 155 155	5.8 1.16 6.2 1.31 5.9 1.14 7	31 1.2	1.47 0.98 (1.36 0.99 (1.24 1.05 (0.19	1.1	0.25 126. 0.29 151. 0.28 192.	. 283. . 328. . 318.	-0.38 -0.55 -0.57	-0.46 - -0.23 -	-0.07 -0.63 -0.49
3 RUNS	25.96	6 508.	102.	28.37	19.03	39.1	2.09 556.	5. 362.3	м	195	6.0 1.20		1.36 1.01 0.22 BOWEN RATIO=	0.22 10=	1.1 0.27 0.50	27 156. 27.	310.	-0.50	-0.33 - 0.10	-0.40
FW-FE LINE																				
200																				
17 45 13 4 17 54 37 5 18 25 30 4	481 29.76 555 30.14 497 29.96	6 566. 4 565. 6 559.	. 155.	28.83 28.98 29.46	9.21 20.47 19.84	39.7 39.0 40.0	2.60 539. 2.37 519. 2.32 611.). 359.7 9. 358.9 1. 358.3	7 066 9 240 3 068	206 193 177	5.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.06 1.11 1.13 1.22 1.05	1.06 0.13 1.1 1.13 0.15 1.2 1.05 0.17 1.5	1.1 0. 1.2 0. 1.5 0.	0.32 87. 0.33 108. 0.33 115.	7. 353. 3. 352. 5. 420.	-0.57 -0.42 -0.61	-0.15 -0.18 -0.23	-0.18 -0.24 0.14
3 RUNS	29.95	5 563.	. 161.	29.09	16.51	39.6	2.43 556.	5. 359.0	0	192	4.8 1.	1.01 1.	1.11 1.08 0. BOWEN RATIO=	3 0.15 10=	1.11 1.08 0.15 1.3 0.33 BOWEN RATIO= 0.28	33 103	3. 375. 32.	0.53	-0.19	-0.09
300 -																				
18 05 34 5 18 15 26 5	521 30.26 532 30.04	.6 502. 14 507.		29.83 29.83	20.28 20.28	38.5 37.7	3.84 494. 0.48 428.	4. 358.3 8. 358.4	3 067	182	4.6 1.	1.08 1.	1.12 0.89	0.20	0.20 1.4 0.34 0.17 1.1 0.35	34 112. 35 71.	2. 391. 1. 267.	-0.56 -0.31	-0.19 -	-0.29
2 RUNS	30.15	5 505.	. 38	29.83	20.28	38.1	2.16 461.	1. 358.4	4	5,	4.6 1.06		1.17 0.85 0.19 BOWEN RATIO=	5 0.19 110=	1.3 0.34 0.28		92. 329. 21. 62.	-0.44	0.01	-0.30

1 NRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 10-JUL-97 PRINT DATE 10-JUL-97 SGP FLIGHT 21. ADVECTION/BUDGET

DETRENDED		Z N	AVERAGES	ES								RMS					8	RECTE	CORRECTED FLUXES	S	
ST GMT SEC DIST	PALT RALT	RALT	TEMP	DEVP	T PRI	£ 5.	I NETR	TEMP DEWPT PRTS GRN NETRD LICOR HDGL	5 5 5	L WIND		GEL V	GEL 1	EP.	OT RC	UGEL VGEL WEP POT RCOZ RH20	5	3	ž	3	ZOM
PAPERCLIP PATTERN ON BS-BN LINE	N BS-B	N LIN	삗																		
100 FT RUNS, NORTHBOUND	QUIND																				
15 35 19 426 28.58 16 04 11 433 28.12 16 34 28 445 29.09	372. 367. 368.	**	29.97 30.60 31.28	20.9	8 36. 7 39. 0 42.	7.4-	% 441 % 501 8 513	29.97 20.98 36.7 1.86 441. 360.5 011 209 30.60 20.77 39.4 1.84 501. 359.1 010 203 31.28 20.50 42.1 1.48 513. 359.1 012 194	5 011 1 010 1 012		7.7 7.1 7.3	.69 1.51 1.53	.57 .59 .59	3.85	322	7.7 1.69 1.57 0.92 0.30 1.1 0.27 156. 7 7.1 1.51 1.59 0.84 0.32 1.7 0.30 147. 7.3 1.43 1.45 0.79 0.30 0.9 0.31 139.	7 156 0 147 1 139	248. 269. 186.	-0.17 -0.42 -0.16	2480.17 -0.68 -0.46 2690.42 -0.47 -0.34 1860.16 -0.34 -0.31	-0.46 -0.34 -0.31
3 RUNS 28.60	369.	¥.	30.62	20.7	39.	4 1.7	3 485	30.62 20.75 39.4 1.73 485. 359.6	9	202	7.3 1	.54 1	.54 C	1.85 0 RATIO	.31 1	2 0.2	7 147	¥, %	-0.25 0.12	7.3 1.54 1.54 0.85 0.31 1.2 0.29 147. 2340.25 -0.50 -0.37 BOMEN RATIO= 0.63 7. 35. 0.12 0.14 0.06	-0.37
0.8 ZI , SOUTHBOUND																					
15 51 11 420 21.92 16 18 36 439 22.32 1 16 49 26 433 22.41 1	988. 056. 239.	53.	8.83 8.73	18.6 17.1 18.3	50 35. 17 38.	4 7 W	12 401 17 421 17 435	23.95 18.60 35.4 1.42 401. 359.3 195 206 8.3 0.95 1.09 1.06 0.18 2.1 0.55 23. 248. 23.75 17.18 38.5 1.37 421. 357.6 194 197 8.4 0.92 1.09 0.87 0.20 2.7 1.01 -18. 581. 22.51 18.37 39.3 1.17 435. 358.2 194 203 7.6 1.09 0.97 1.24 0.12 1.9 0.54 -22. 183.	2 135 2 124 2 124	206 197 203	8.3 8.4 7.6	8.8.8	888	06 0.87 0.24 0.24	.18 2 .20 2 1 21 .	.1 0.5 .7 1.0 .9 0.5	5 23 1 -18 4 -22	248. 581. 183.	0.44	0.44 0.01 -0.17 0.41 -0.04 0.11 0.30 0.01 0.71	-0.17 0.11 0.71
3 RUNS 22.22	22.22 1094. 482.		23.40	18.0	5 37.	7.1.5	52 419	23.40 18.05 37.7 1.32 419. 358.4	4	202	8.10	§. E	.05 1 OVEN	.06 0 RATIO	.17 2 0	8.1 0.99 1.05 1.06 0.17 2.2 0.70 BOMEN RATIO= -0.02	0 20 0	-6. 337. 20. 174.		0.38 -0.01 0.06 0.02	0.22

		707
LONG	60	3
SGP FLIGHT 22. WITH P-3 AND LONG	CORRECTED FLUXES	ž
TH P	ECTED	UGEL VGEL WEP POT RCOZ RHZO WT WQ
22. W	CORR	5
IGHT		RH20
GP FL		RC02
		P 0
UL-97		S.
12-J	s	VGEL
DATE	RMS	UGEL
PRINT DATE 12-JUL-97		TEMP DEWPT PRT5 GRN NETRD LICOR HDGL WIND
76-7		HDGL
NEW(30 JUNE 97), FLIGHT DATE 12-JUL-97		<u>8</u>
DATE		TRD L
1GHT		RN NE
), F		RT5 G
NE 97		WPT P
30 JU	AGES	AP DE
NEW	AVERAGE	
POK97	Ş	T RAL
OARC		DIST PALT RALT
FILE		DIST
NRC C-FPOK, FILE OARCPOK97_	۾	ST GMT SEC
ე ე	ETRENDED	<u>F</u>
7	DET	ST

KINGFISHER, 100'

-0.50 -0.32 -0.49 -0.53	-0.46 0.08
-0.62 -0.47 -0.46	0.07
0.00 0.03 0.13	-0.12 -
155 116 143 185	150 25.
174. 172. 185. 215.	187. 17.
205 10.3 1.60 1.35 0.93 0.31 0.8 0.13 174. 195 10.4 1.53 1.49 0.88 0.38 0.7 0.13 172. 199 10.6 1.47 1.38 0.92 0.35 0.8 0.13 185. 209 9.6 1.62 1.48 0.95 0.38 0.8 0.20 215.	10.2 1.56 1.43 0.92 0.35 0.8 0.15 187. BOWEN RATIO= 1.25 17.
1 0.8 5 0.7 8 0.8	5 0.8
5000 5000 5000 5000	2 0.3 .TIO=
20 88 80 90 90 90 90 90 90 90 90 90 90 90 90 90	3 0.9 IEN RA
50 1.3 53 1.4 52 1.4	56 1.4 BOL
W 4 6 6	.2 1.5
50 % 50 00 00 00 00 00 00 00 00 00 00 00 00 0	202 10
356 2 183 1 356 1 356 2	~
360.9 356 359.6 183 359.8 356 357.2 356	93 17.80 39.3 1.34 482. 359.4
29.09 20.85 35.5 1.38 408. 3 29.63 12.79 38.0 1.34 455. 3 29.60 21.02 38.5 1.32 481. 3 31.39 16.53 45.1 1.33 584.	482.
1.38 1.32 1.32	1.34
35.5 38.0 38.5 45.1	39.3
20.85 12.79 21.02 16.53	17.80
39.63 39.63 39.63	29.93
33.	32. 3
386. 391. 398.	391.
26.63 26.41 26.91 26.44	26.60
330 330 335	N
18 02 51 46 01 56 53 11	RUNS
2527	4

	0.31 0.12 0.15	0.19
	0.48 -0.35 0.35 -0.36 0.15 -0.22	0.33 -0.31 0.14 0.06
	0.48	0.33
	93.	κχ. 3
	ដូង	-87.
	×2.25	72.0
	1.1	1.4 (0.50
	30	0.40
	26.28	.95 (RATIO
	53 1	.47 0 34EN
	882	98 1. BG
	9,4,6	.5 0.
	60 51 51 51 51	4 12.
	25.23 12.21 12.22	21
	440 5W5	~
	23.86 19.19 34.9 1.19 406. 359.4 187 216 13.0 0.90 1.57 1.02 0.59 2.0 0.36-143. 2 23.64 19.56 35.4 1.19 435. 359.4 353 210 12.5 1.02 1.53 1.02 0.30 1.1 0.23 -83. 2 24.03 19.53 37.2 1.20 481. 358.9 186 215 12.0 1.01 1.31 0.81 0.32 1.1 0.22 -35.	23.84 19.43 35.8 1.19 441. 359.2
	406. 435. 481.	441.
	202	1.19
	2 4 6	8.5
	55 3	.43 3
	3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 19.
	22.23	23.8
	620. 621. 640.	627.
	947. 948. 966.	%
	27.29 27.83 28.53	27.88
	572 27 396 27 559 28	7
_	2000	S
0.8 ZI	15 30 15 41 16 14	3 RUNS
_	· -	

444444
-0.46 -0.49 -0.59 -0.59 -0.55 -0.55 -0.50
0.46 -0.46 -0.46 -0.52 -0.55 -0.55
256. 242. 342. 342. 281. 311. 274.
138. 120. 104. 147. 127. 138. 150.
0.24 0.25 0.25 0.30 0.31 0.31
4400000
25 25 26 27 28 27 27 27 28
28 0 0 28 0 0 0 28 0 0 0 28 0 0 0 28 0 0 0 28 0 0 0 0
7 1.18 0.83 0.26 1.14 0.86 0.24 1.13 0.81 0.25 1.1 1.49 0.93 0.26 1.1 1.55 0.88 0.26 1.1 1.55 0.81 0.25 1.1 1.55 0.81 0.25 1.1 1.55 0.81 0.27 1.1 1.55 0.87 0.28 1.55 0.87 0.28 1.1 1.55 0.87 0.28 1.1 1.55 0.87 0.28 1.1 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.87 0.28 1.25 0.28
607
1.48 1.54 1.54 1.41 1.47 1.47 1.47
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
198 200 194 193 197 200
264 102 102 102 101 101 101 101
N4W041/11/10
358.5 358.4 358.3 358.0 357.4 357.2 357.2
566. 577. 581. 588. 609. 614.
566. 577. 581. 588. 609. 614.
2.13 566. 2.18 581. 2.18 581. 2.18 588. 2.16 609. 2.19 617. 2.15 614.
34.2 2.13 566. 34.2 2.17 577. 34.5 2.18 581. 35.7 2.16 609. 35.0 2.19 617. 36.2 2.15 614.
21.59 34.2 2.13 566. 21.66 34.2 2.17 577. 21.54 34.5 2.18 581. 21.65 34.7 2.18 588. 21.71 35.7 2.16 609. 21.68 36.0 2.19 617. 21.57 36.2 2.15 614. 21.61 36.5 2.15 621.
21.59 34.2 2.13 566. 21.66 34.2 2.17 577. 21.54 34.5 2.18 581. 21.65 34.7 2.18 588. 21.71 35.7 2.16 609. 21.68 36.0 2.19 617. 21.57 36.2 2.15 614. 21.61 36.5 2.15 621.
29.04 21.59 34.2 2.13 566. 29.09 21.66 34.2 2.17 577. 29.16 21.54 34.5 2.18 581. 29.19 21.65 34.7 2.18 588. 29.56 21.71 35.7 2.16 609. 29.71 21.68 36.0 2.19 617. 29.73 21.57 36.2 2.15 614. 29.78 21.61 36.5 2.15 621.
33. 29.04 21.59 34.2 2.13 566. 34. 29.09 21.66 34.2 2.17 577. 33. 29.16 21.54 34.5 2.18 581. 36. 29.19 21.65 34.7 2.18 588. 31. 29.56 21.71 35.7 2.16 609. 31. 29.71 21.68 36.0 2.19 617. 31. 29.73 21.57 36.2 2.15 614. 33. 29.78 21.61 36.5 2.15 621.
477. 33. 29.04 21.59 34.2 2.13 566. 478. 34. 29.09 21.66 34.2 2.17 577. 477. 33. 29.16 21.54 34.5 2.18 581. 481. 35. 29.19 21.65 34.7 2.18 588. 477. 31. 29.56 21.71 35.7 2.16 609. 478. 31. 29.73 21.57 36.2 2.15 614. 481. 33. 29.78 21.61 36.5 2.15 621.
14.49 477. 33. 29.04 21.59 34.2 2.13 566. 14.33 478. 34. 29.09 21.66 34.2 2.17 577. 14.56 477. 33. 29.16 21.54 34.5 2.18 581. 14.61 481. 36. 29.19 21.65 34.7 2.18 588. 15.10 477. 31. 29.56 21.71 35.7 2.16 609. 14.58 478. 31. 29.71 21.68 36.0 2.19 617. 15.01 477. 31. 29.73 21.57 36.2 2.15 614. 14.77 481. 33. 29.78 21.61 36.5 2.15 621.
261 14.49 477. 33. 29.04 21.59 34.2 2.13 566. 235 14.33 478. 34. 29.09 21.66 34.2 2.17 577. 262 14.56 477. 33. 29.16 21.54 34.5 2.18 581. 244 14.61 481. 36. 29.19 21.65 34.7 2.18 588. 272 15.10 477. 31. 29.56 21.71 35.7 2.16 609. 244 14.58 478. 31. 29.71 21.68 36.0 2.19 617. 275 15.01 477. 31. 29.73 21.57 36.2 2.15 614. 243 14.77 481. 33. 29.78 21.61 36.5 2.15 621.
10 261 14.49 477. 33. 29.04 21.59 34.2 2.13 566. 48 235 14.33 478. 34. 29.09 21.66 34.2 2.17 577. 04 262 14.56 477. 33. 29.16 21.54 34.5 2.18 581. 38 244 14.61 481. 36. 29.19 21.65 34.7 2.18 588. 17 272 15.10 477. 31. 29.56 21.71 35.7 2.16 609. 14 244 14.58 478. 31. 29.71 21.68 36.0 2.19 617. 28 243 14.77 481. 33. 29.78 21.61 36.5 2.15 614.
261 14.49 477. 33. 29.04 21.59 34.2 2.13 566. 235 14.33 478. 34. 29.09 21.66 34.2 2.17 577. 262 14.56 477. 33. 29.16 21.54 34.5 2.18 581. 244 14.61 481. 36. 29.19 21.65 34.7 2.18 588. 272 15.10 477. 31. 29.56 21.71 35.7 2.16 609. 244 14.58 478. 31. 29.71 21.68 36.0 2.19 617. 275 15.01 477. 31. 29.73 21.57 36.2 2.15 614. 243 14.77 481. 33. 29.78 21.61 36.5 2.15 621.

EL RENO, 100'

-0.44 -0.40 -0.27 -0.42 -0.47 -0.33

62	ę
0-0	
-0.50	5
-0.52	5
280.	•
131.	<u>.</u>
0.28	
7.5	
197 9.2 1.43 1.44 0.85 0.27 1.5 0.28 131. 2800.52 -0.50 -0.39	M KALIUS
1.44	5
1.43	
9.2	
197	
29.41 21.63 35.3 2.16 597. 357.8	
197.	
.16 5	
5.3 2	
.63	
41 21	
33	
478.	
14.68	
8 RUNS	

0.8 21

0.14
-0.17 0.14 0.12 0.24
-0.02 -
236 168.
-38. 2 45. 1
.5.
0.8 0
0.32
0.94 RATI
1.25 BOVEN
211 10.7 1.01 1.25 0.94 0.32 0.8 0.51 BOWEN RATIO= -0.16
10.7
211
۲.
358.
2 565.
4 1.7
4 33.4
19.7
23.80 19.74 33.4 1.72 565. 358.7
590.
15.52 1005.
-
RUNS
4 R

INBOUND 3000' MSL

^{18 09 08 451 28.83 933. 602. 25.42 19.29 39.8 1.27 610. 357.3 161 200 9.3 1.06 1.29 1.18 0.16 0.8 0.30 56. 392. -0.20 -0.44 0.09}

SGP FLIGHT 23. ADVECTION/ BUDGET 1 NRC C-FPOK, FILE DARCPOK97_NEW(30 JUNE 97), FLIGHT DATE 13-JUL-97 PRINT DATE 13-JUL-97

	~1			ន្តម្ភាព	22		852	83		%225	5 22
	707			9999	00		0.09 -0.01 0.12	0.07		-0.36 -0.61 -0.35 -0.30	00
	3			-0.49 -0.30 -0.48 -0.23 -0.34 -0.23	-0.26 -0.49 -0.35 0.05 0.11 0.17		-0.23 -0.00 -0.08	-0.10 0.10		-0.29 -0.47 -0.29 -0.44 -0.24 -0.52 -0.23 -0.45	0.03
IXES				25.82	δ. 5.0		-	6 4		8888	% E
J. F.	ž			-0.30 -0.27 -0.18 -0.30	0.0		0.19 0.14 0.24	0.19		0.29	0.0
CTEC	3			183. 182. 320.	219. 58.		27. 117.	474. 191.		292. 264. 244. 263.	14.
CORRECTED FLUXES	5			127. 113. 139.	3. X		-78. 274. -99. 417. -82. 731.	86.		148. 161. 155.	7.
				8888	۲5 1		1887-	8		8888 1111	31 1
	POT RC02 RH20			1.0 0.20 1.1 0.23 1.1 0.23	1.0 0.		9 9 - 1 - 6	0 0. 18		74 W W	4 0. 57
	2			2 1. 2 1. 2 0.	- 0		444	4 1.0 (~ 3 5 5 5 + + + + +	й
	8			0000	0 H		4.00	0.5		0000	
	Ę,			0.90 0.87 0.89	0.87 RAT		6.0 8.0 8.0	0.92 RAT		8828	0.85 RAT
	UGEL VGEL WEP			1.50 1.44 0.90 0.31 1 1.59 1.53 0.87 0.27 1 1.33 1.45 0.81 0.30 1 1.65 1.63 0.89 0.32 0	8.1 1.52 1.51 0.87 0.30 1.0 0.23 140. 219. BOMEN RATIO= 0.64 25. 58.		8.9 1.13 1.48 0.97 0.44 1.0 0.61 9.3 1.26 1.54 0.80 0.64 1.0 1.08 8.8 1.19 1.32 0.99 0.54 0.9 1.17	9.0 1.19 1.45 0.92 0.54 1.0 0.95 -86. 474. BOWEN RATIO= -0.18 9. 191.		1.56 1.62 0.89 0.31 1.5 0.29 1.49 1.57 0.88 0.36 1.4 0.33 1.60 1.56 0.91 0.32 1.3 0.30 1.51 1.66 0.86 0.32 1.3 0.32	8.5 1.54 1.60 0.89 0.33 1.4 0.31 152. 2660.26 -0.47 -0.41 Bowen Ratio= 0.57 7. 17. 0.03 0.03 0.12
RMS	SEL \			8888	.52		28.3	6.		% \$ 8 5	.54
				88.7 1.8.8 1.7.7 1.5.7	-		φ.w. α	.0		7.4 8.4 1.6 1.6 1.6	5.
	S IN										
				4888	202		8 22 8 21 7 21	219		8 188 1 183 8 184 1 187	185
	윤			2000	_		5 6 6	50		8888	0
	TEMP DEWPT PRT5 GRN NETRD LICOR HDGL			356.5 010 206 357.4 012 200 358.2 011 202 358.5 012 198	357.7		357.1 198 224 357.5 198 217 358.0 197 217	25.51 17.51 39.0 1.36 532. 357.5		357.7 098 357.1 261 356.7 098 356.4 261	357.0
	ETRO			8358	32.10 20.12 41.4 1.71 551.		25.20 17.98 37.5 1.49 502. 25.33 17.24 39.2 1.38 532. 26.00 17.30 40.4 1.22 561.	532.		8.8.8.8	20.20 43.9 1.71 596.
	R			20.24 40.0 1.78 5 20.08 40.6 1.84 5 20.02 41.7 1.70 5 20.14 43.3 1.50 5	۲.		58 27	38.		1 20.19 43.5 1.69 5 20.25 44.0 1.70 5 5 20.22 43.8 1.72 6 8 20.15 44.4 1.73 5	۲.
	5			0 4 6 W	4.		204	.0		7.0 8.4 	.6
	ĕ			0444	41		337	39		3434	0 43
"	E.			2888	20.13		7.2 7.3 7.3	17.5		8888	20.2
VERAGES	욮	ᇒ		31.02 31.72 32.44 33.21	2		888	5.		33.34 33.55 33.55	33.48
AVE		BS-BN									
S	RALI	₹		***	35.		88 75.5 1.	728.		8888	30.
	PALT RALT	PAPERCLIP ADVECTION STUDY ON		373. 371. 375.	373.		975. 1057. 1046.	20.58 1026. 728.		383. 385.	384.
	DIST	NO.		16 11 30 440 29.57 16 37 41 448 29.72 17 06 34 433 28.87 17 33 56 416 27.27	28.86		16 25 25 369 18.93 16 52 04 424 20.88 1 17 20 22 429 21.92 9	.58		17 46 55 499 29.53 17 56 32 520 29.94 18 06 23 513 29.70 18 16 01 511 28.87	29.51
	SEC D	DVEC		2882	88		5 2 5 2 2 2 2 2 2 2	20		8888 8888	X
ē		IP A	RUNS	3246	4.5		847 844	45	H	55 55 12 55 55 51 51 51 51 51 51 51 51 51 51 51	
DETRENDED	ST GMT	ERCL	100 · R	11 3 37 4 38 5	RUNS	0.8 21	222	3 RUNS	DW-DE LINE	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RUNS
DET	S	A	100	5577	4	8.0	5 5 7	m	2	7	4

<u>8</u>
CITAT
RENO,
핍
1 24.
FLIGHT
SGP
-97
- JUL - +
DATE 14
PRINT
JUL-97
73E
DATE 14-JUL
LIGHT
ŭ.
UNE 97),
SE
NEW(30
OK97_NE
ARCPOK
J
, FILE
-FPOK,
NRC C
-

				<u> </u>	% &		448-7	5 22 5		8258
	707			-0.10 -0.13 -0.03	-0.06 0.06		-0.24 -0.44 -0.48 -0.41	-0.51		0.05 -0.14 -0.01 0.82
6	3			-0.12 -0.07 0.05 0.03	-0.03		81.0000	-0.11 -0.10 0.05		0.07 -0.02 0.10 -0.08
CORRECTED FLUXES	ž			-0.12 -0.12 0.02 -0.07 -0.08 0.05 0.00 0.03	-0.05 -0.03 0.06 0.07		-0.20 -0.06 -0.44 -0.11 -0.53 -0.09 -0.42 -0.19 -0.58 -0.04 -0.04 -0.06	4.2 1.29 1.16 0.72 0.33 2.1 0.43 142. 3530.45 -0.11 3.5 1.12 1.01 0.72 0.29 2.5 0.39 118. 3100.44 -0.10 BOWEN RATIO= 0.38 23. 68. 0.12 0.05		1.06 0.55 0.76 1.64
ECTED	3			227. 238. -8.	107. 126.		283 320 347	353. 310. 68.		306. 230. 305. 523.
8	5			231. 23.	12.		83. 147. 124.	142. 118. 23.		53. 83.
	RH20			4 0.74 0.93 0.15 0.8 0.30 2 0.74 0.88 0.14 0.9 0.36 6 0.71 0.57 0.26 2.5 0.61 6 0.73 0.59 0.21 1.8 0.52	0.45		4.0 0.94 0.85 0.62 0.23 3.0 0.27 8 3.8 0.78 0.86 0.67 0.31 3.4 0.32 10 3.1 1.21 1.04 0.79 0.33 2.0 0.40 14 12 1.22 1.04 0.77 0.28 1.9 0.44 12 3.6 1.25 1.11 0.72 0.28 2.3 0.48 10	0.43		1.7 1.15 1.11 1.18 0.18 4.2 0.27 2.1 1.19 1.15 1.14 0.20 4.5 0.33 3.0 1.00 1.24 1.15 0.16 4.3 0.37 3.1 1.07 1.09 1.36 0.24 3.8 0.37
	RC02			0.8 2.5 1.8	0.09		2.4 2.9 2.3	2.5 2.5 0.35		4446
	2			0.15 0.26 0.21	0.19 P=		0.23 0.33 0.28	0.33 0.29		0.18 0.20 0.16 0.24
	A.			0.93 0.88 0.57 0.59	0.73 0.74 0.19 1.5 0.45 BOWEN RATIO= 0.09		0.67 0.73 0.73 0.73	0.72 0.72		1.18 1.14 1.15 1.36
	VGEL			77.5	0.73 80¥EN		28.00.85	1.16 1.01 BOWEN		1.15 1.24 1.09
RMS	UGEL VGEL			4.8 0.74 (4.9 0.72 (3.9 0.86 (4.0 0.76 (4.0 0.			0.9% 0.78 1.22 1.25	1.2%		1.15
				8.4.7	4.4 0.77	•	3.4.3.80	3.5		1.7 2.1 3.0 3.1
	WIND			294 299 311 315	304	11 23	25 S S S S S S S S S S S S S S S S S S S	33 36		323 328 351 353
	FDGF			23 23 23 24 24 25 24		δ, Σ	24 24 24 24 24 24 24 24 24 24 24 24 24 2			180 358 174 359
	EMP DEWPT PRT5 GRN NETRD LICOR HDGL			358.5 359.5 359.7 359.8	359.4	ERNATE LICOR INLET AND LAG OF 28, NOT 23)	359.5 359.8 358.7 359.1 359.3	33.19 21.44 41.7 2.08 616. 360.4 32.47 20.60 40.1 2.18 551. 359.5		371.9 180 371.3 358 372.0 174 370.3 359
	ETRO			1.87 440. 1.79 472. 1.85 478. 1.78 438.	457.	D LAG	4 19.85 36.6 2.37 438. 3 2 18.65 36.9 2.40 429. 3 0 21.26 42.4 1.99 615. 3 5 21.26 41.6 2.16 588. 3 2 21.15 41.7 2.09 617. 3	616. 551.	*	28.30 19.22 46.4 1.20 493. 28.45 17.58 45.8 1.30 516. 28.72 20.11 46.4 1.24 509. 28.99 18.96 47.4 1.25 510.
	N			1.87 1.85 1.78	1.82	¥	22.37	2.08 2.18	TAT 10	1.35 1.25 1.25
	RT5 (35.1 35.9 36.1	35.9 1.82	I.	76.466	0.1	NORTH DAKOTA CITATION	48.44
	P T P			13.03 3 18.34 3 18.10 3 18.24 3	.93	80	28,33	3 8 4 4	DAKOT	25.25 24.25 24.44
GES	P DE			4 2 7 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26.95 16.93	ATE (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 21. 7 20.	Æ H	6778 6778
RUN AVERAGES	TEM			26.94 27.02 26.87 26.96	26.9	LTERN	30.94 31.02 33.20 33.25 33.22			28.7
2	RALT			410. 480. 472.	443.	JSE AI	ដូងអូង	22 25	-	450. 448. 443. 441.
	PALT			816. 818. 883.	849.	SNOS 1	463. 468. 468.	467.	TERCO	769. 757. 759.
	DIST			15.28 14.96 15.40 15.40	15.26	(LAST TWO RUNS USE ALT	14.65 14.53 14.73 14.85	14.59	KINGFISHER LINE, INTERCOMP WITH	30.06 32.22 27.57 31.11
	SEC			270 11 234 14 269 11 237 11	=	(LAST	269 1- 232 1- 265 1- 265 1- 239 1- 271 1-	245 1	N T I	483 539 389 491
NDED	GMT	읾		3458	RUNS		22 24 24 24 24 24 24 24 24 24 24 24 24 2	<u>s</u> %	ISHE	01 46 4 11 22 37 22 37 3
DETRENDED	ST	EL RENO	0.8 ZI	16 01 16 08 16 30 16 36	A RU	100 FT	16 14 16 20 17 58 18 94 18 12		KINGF	17 01 17 11 17 22 17 31
		•								

0.18

0.02

1.00

341. 110.

20.

4.2 0.34 0.22

1.15 1.21 0.20 BOWEN RATIO=

1.10

507.

1.25

46.5

18.97

28.61

446.

764.

30.24

4

SGP FLIGHT 25. KF & EL RENO, 1 NRC C-FPOK, FILE DARCPOK97_NEW(16 JULY 97), FLIGHT DATE 16-JUL-97 PRINT DATE 16-JUL-97

				W W O &	0 M		~ ∞	0 V			47674986	9.5		ម្លុក្ខមិន	= o
	707			-0.35 -0.43 -0.40 -0.38	-0.39		0.77	0.82			-0.62 -0.49 -0.49 -0.52 -0.58 -0.58	-0.60		0.53 1.07 0.85 0.78	0.81
s	3			-0.19 -0.15 -0.16	-0.17		-0.18 -0.23	-0.21			0.18 -0.14 -0.14 -0.13 -0.13 -0.13	-0.15 0.03		-0.08 -0.37 -0.15	-0.23 0.12
FLUXES	ž			-0.02 -0.10 -0.03	-0.05		0.45	0.01			0.50 -0.43 -0.43 -0.52 -0.50 -0.63	-0.50 0.06		-0.04 0.20 0.06 0.17	0.10
CORRECTED	3			156. 153. 229. 243.	1 85.		326. 565.	120.			356. 248. 323. 412. 352. 314. 417.	350.		502. 572. 729. 617.	605.
ğ	5			<u> </u>	₹.		-27.	-12. 15.			8.5.5.5.5.5.5.8 8.4.5.5.5.5.8.8	97.		. 6. . 24.	3.
	RH20			0.22 0.19 0.35	0.26		0.51	0.52			0.55 0.47 0.50 0.39 0.51 0.55	.51		0.54 0.51 0.74 0.64	0.61
	RC02 R			1.20	1.2 0		1.8 0	-0.03			22.2 2.2 2.2 2.5 2.5 2.5 2.5	2.1 0.51 0.28		0.00	0.9 (
	PQ RG			0.33 1 0.32 1 0.36 1	8		0.17	8."			0.25 0.27 0.27 0.24 0.29			0.17 0.17 0.13	
					1.29 0.79 0. BOWEN RATIO=		139	1.23 1.00 0.20 BOWEN RATIO= .				1.33 0.71 0.25 BOWEN RATIO=		0 2 0 0 0	1.09 0.97 0.15 BOWEN RATIO=
	- VEP			2 0.71 2 0.75 1 0.83 5 0.85	9 0.79 EN RATI		1 0.89	 			6 0.65 2 0.75 5 0.69 6 0.74 7 0.73 7 0.73	N O.		8 0.89 1 0.96 0 0.95 7 1.07	9 0.
v	VGEL			1.19 1.12 1.41 1.43			1.21				1.26 1.37 1.32 1.45 1.26 1.27 1.27			0.98 1.11 1.20 1.07	
RMS	UGEL			8888	1.19		1.05	7.0			1.12 0.08 0.08 1.07 1.22 1.22	1.12		0.94 0.98 0.98	0.97
				4.4.4 6.4.6 6.4.6	4.4		5.5	5.3			44446464	8.4		5.7.9	5.4
	VI NO			214 206 190	200		219	214			207 210 203 204 182 179 181	192		220 217 206 200	210
	HOGL			358 2 182 2 358 1	10		356 2 183 2	10			268 2 268 2 268 2 268 1 268 1 268 1 267 1	•		268 097 267 097	•
				378.2 3 378.2 1 376.4 3 376.0 1	~:		~ 0;	377.8			377.0 376.9 376.9 376.4 377.9 377.9 374.7	6.		378.2 378.2 378.2 378.1	378.2
	GRN NETRO LICOR			375	377.2							. 375		E E E E	
	ŒTRO			455. 451. 524. 535.	.167		442. 452.	447.			586. 607. 597. 605. 622. 612.	607.		506. 553. 590.	561.
	SRN			82.55	1.25		1.15	1.15			2.22 2.28 2.28 2.38 3.38 3.38	1.97		7.1. 1.63 1.58	2.5
				43.4 44.0 46.0 47.1	45.1		41.8	42.8			4.0.4 4.0.4 4.0.4 4.0.4 4.0.4	39.6		35.4 36.8 37.7 38.4	37.1
	<u> </u>										7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				44 3
ES	TEMP DEUPT PRTS			19.76 18.54 19.48 19.63	19.35		17.91 17.76	17.84			20.39 20.33 20.33 20.21 20.62 20.62 20.62 20.64 20.65	20.43		18.70 17.92 18.54 18.60	18.44
VERAGES	TEMP			31.29 31.59 32.44 32.77	32.02		26.23 26.49	26.36			31.59 31.62 31.71 31.82 32.12 32.30 32.38	31.99		26.28 26.34 25.71 25.84	26.04
₽ N	PALT RALT			333.3	32.		600. 5%.	.009			483.33.33.	32.		528. 533. 647.	587.
	PALT			8 88 84 84 85 85 84	383.		918. 916.	917.			12222 1222 1222 1222 1222 1222 1222 12	474.		935. 943. 1052. 1050.	%
	DIST			26.55 26.86 26.87 26.70	26.75		27.39 28.49	27.94			14.51 15.04 14.57 14.87 14.64 14.81	14.74		15.67 15.77 15.64 15.15	15.56
_	SEC	떮		984 984 984 984			37 432 19 519				253 253 260 260 260 260 260 260 260 260 260 260			2 8 2 2 2 2 2 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4	
NOEC	품	1SH	_	27 55 18 55	RUNS	12	2 37	RUNS	읦		3 1 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	RUNS	12	5 4 4 5 1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	RUNS
DETRENDED	ST	KINGF I SHER	0	16 10 16 18 16 51 16 59	4 RL	2 8.0	16 32 16 41	2 R	EL RENO	100	17 28 17 34 17 39 17 45 18 12 18 12 18 23	ಪ ಉ	0.8 7	17 16 17 22 17 55 18 01	સ જ
_			•-			_	• •		1	•			_		

SGP FLIGHT 26, TAPE 1 1 NRC C-FPOK, FILE DARCPOK97_NEW(16 JULY 97), FLIGHT DATE 16-JUL-97 PRINT DATE 22-JUL-97

RUN A	AVERAGES			•			RMS					CORRE	ECTED	CORRECTED FLUXES		
	TEMP DEWPT	TEMP DEWPT PRT5 GRN NETRD LICOR HDGL	ETRO LI	508 HB		NINO (UGEL VGEL WEP	SEL VE	ē.	r RC02	RC02 RH20	5	3	3	3	704
	14.01 17.23	32.4 2.62	236.	72.8 26	-	8.8	1.23	.08 0.	59 0.	18 1.7	0.45	74.		. 60.0	0.24	0.48
	34.03 17.33 34.05 18.20	32.9 2.55	260.	22.2 25.25 26.57		တ ရ ဝ ည	2.7	1.5 0.50	57 0.0	24 3.0 19 2.3	0.38	w, ₹	297 147.	0 0 0 0 0 0	2,5	6.7
	53.98 18.18	31.4 3.23	5.5	3.2		8.1	1.26 0	23	58 0.	21 1.9	0.38	^		1.0	0.27	0.32
	53.55 18.41	29.3 5.82	26.	3.9.2	-	7.2	1.15 0	3 12	, 65 0	25 0.9	0.44	÷ 5	88	5 5	2.0	35.0
mм	2.50 19.31	27.7 3.00 27.3 3.00	-1 . 5	374.8 265 375.2 100		7. 2. 2.	0.95 0	2.2 9.0	0.46 0.	0.23 0.8 0.24 1.2	1.2 0.23	- - - - - - - -		8 8	0 12	0.12
MM	31.77 19.57 31.55 19.55	25.9-0.11	-56. -57.	377.7 26 378.3 09	265 160 099 158	7.4	0.82 0	0.57 0. 0.52 0.	0.38 0.0.37 0.	0.19 1.5	0.18	-1-	21. 27.	0.06	0.0	-0.06 -0.16
ろぶ	4.35 13.57	24.35 13.57 32.6 1.63 24.49 13.53 31.6 1.72	154. 378.1 263 188 104. 378.7 102 188	78.1 26 78.7 10	53 18 02 18	8 10.3	10.3 0.51 0.46 0.47 0.14 0.9 0.65 -23. 10.0 0.60 0.47 0.41 0.18 0.9 0.83 -29.	47 0.	47 0.	14 0.9 18 0.9	0.65	2.83	332.	-0.13 -0.01 -0.01 -0.14 -0.12 0.40	0.01	0.01
NN	27.91 15.83 27.96 15.76	3 30.8 2.10 -20. 375.7 262 5 30.2 2.26 6. 376.1 103	-20. 3	75.7 26	52 13 57 50		9.8 0.55 0.47 0.43 0.09 0.8 0.46 -14. 205. 9.8 0.44 0.50 0.45 0.07 0.6 0.35 -11. 156.	.50 0	.43 0. .45 0.	09 0.8 07 0.6	0.46	4-1-	205. 156.	-0.10	-0.05	-0.13
\sim	29.30 16.76 29.43 16.40	6 29.0 7.25 -77. 375.2 262 0 28.5 4.76 2. 375.4 104	-77. 3 2. 3	3.2 2 3.4 2	62 172 04 173	==	0.31 0.35 0.23 0.07 0.4 0.29 0.29 0.30 0.22 0.04 0.5 0.17	.35 0	.23 0. .22 0.	07 0.7	0.29	5.4.	€. 8	9.0	0.00	0.11
נים נים	30.57 17.72 3	2 26.9-0.35 -61. 374.1 259 6 26.8-0.12 -67. 374.2 109	-61. 3 -67. 3	74.1 2	59 16 09 16	165 12.9 0.30 0.26 0.28 0.06 0.4 0.17 165 12.7 0.32 0.24 0.15 0.05 0.4 0.16	0.30 0	26 0	.28 0. .15 0.	06 0.7 05 0.7	0.17	٠ <u>٠</u> -	30. -5.	300.03	0.00	0.14

1 MRC C-FPOK, FILE DARCPOK97_NEW(16 JULY 97), FLIGHT DATE 17-JUL-97 PRINT DATE 23-JUL-97 SGP FLIGHT 27, MORNING TRANS

DETRENDED		RUN	AVERAGES	GES									RMS						80	CORRECTED	FLUXES	S	
ST GMT SEC D	DIST PAI	PALT RALT		P DE	#PT P	'RT5	GRN	ETRO	TEMP DEUPT PRTS GRN WETRD LICOR HDGL	Ð	L WIND		UGEL VGEL WEP	VGEL	Ŗ		POT RC02	RH20	5	3	꾶	3	704
20 MILES ON AS-AN TRACK	AN TRACE	ادر																					
5001																							
12 59 13 650 36.82 13 11 44 689 36.99 13 49 32 642 37.14	.82 503. .99 504. .14 496.	3. 160. 4. 162. 5. 155.		220	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 97	0.50 3.44 2.58		24.72 20.00 24.1 0.50 -25. 388.0 022 24.45 20.01 24.6 8.44 -8. 390.7 184 24.40 20.12 26.2 2.58 63. 390.6 023	022 184 023	125 117 107	8.6 9.1 10.1	1.11	523	4.00	2.00 2.00	2.4.8 3.4.8	8.6 1.11 0.70 0.46 0.43 4.3 0.59 0. 9.1 1.24 0.72 0.45 0.36 4.8 0.56 -17. 10.1 1.17 0.94 0.59 0.35 3.6 0.34 -21.		. × 5.	0.02 -0.12 -0.01	-0.01 -0.05 -0.12	-6. 0.02 -0.01 -0.05 -360.12 -0.05 -0.02 100.01 -0.12 -0.23
RUN DIVIDED IN TWO	91																						
14 02 16 141 7 14 06 26 482 27	7.70 517. 27.66 512.	7. 167. 2. 171.		24.38 19.63 24.7 2.64 24.68 11.05 28.7 1.44	5 20	7.4	25.64	51. 152.	384.4 394.0	8 2	116	13.7	0.69	0.50	4.0	5 0 .2	2 3.9	0.32	.7. -17.	51. 384.4 180 116 13.7 0.69 0.50 0.46 0.27 2.3 0.32 7. 10. 152. 394.0 183 110 9.3 1.05 0.82 0.60 0.32 3.9 0.39 -1715.	0.06	0.03	0.05
14 41 54 603 35 14 53 09 665 36	35.74 499. 36.04 504.	9. 156. 4. 160.		5 19. 8 14.	.57 3 .15 3	2.4	1.55 1.75	262. 242.	25.35 19.57 31.4 1.55 262. 390.8 021 114 25.68 14.15 32.4 1.75 242. 391.0 184 115	184	114	8.5 9.5	1.42	1.14	0.0	0.3	3.5	8.5 1.42 1.14 0.71 0.31 3.5 0.31 9.5 1.28 0.97 0.80 0.23 4.3 0.28	. 98. 6.	-38. 82.	0.040	28380.40 -0.18 6. 82. 0.04 -0.14	-0.23 -0.71
100 ' (LAST TWO RUNS CUT	O RUNS (CUT SHOR	-	AT CIMARRON RIVER)	VRRON	RIV	ER)																
13 24 22 665 36 13 36 36 654 37 14 15 50 630 36 14 27 49 662 37 15 06 51 436 25 15 15 47 464 25	36.72 385. 37.26 384. 36.87 387. 37.27 385. 25.93 392. 25.46 390.	****	25.04 20.34 24.9 0.76 25.17 20.31 25.6 3.26 25.88 20.66 28.2 2.86 1 26.17 20.77 29.7 2.22 27.74 21.59 33.6 1.55 27.97 21.65 34.5 1.30 2	4 20. 7 20. 7 20. 7 21.	5578644 557864 55786	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.25 2.22 2.22 1.30	19. 55. 150. 197. 203.	19. 390.4 020 (55. 389.8 185 (51. 388.9 020 197. 388.8 185 203. 392.6 021 259. 391.4 185	020 185 020 185 185	888558	7.5 7.0 7.2 8.6 8.4	1.51 1.28 1.28 1.99	1.17 1.34 1.40 1.11	0.55	00000	2 2 2 2 5 0	5 7.5 1.51 1.17 0.59 0.20 5.0 0.50 5 8.5 1.15 1.34 0.59 0.23 4.6 0.44 3 7.0 1.29 1.50 0.68 0.29 3.2 0.35 7.2 1.26 1.40 0.68 0.32 2.9 0.31 9 8.6 1.20 1.11 0.74 0.31 4.7 0.30 8 8.4 1.09 1.17 0.76 0.33 5.1 0.31 1	3. 43. 62. 113.	27. 27. 15. 3. 41.	-0.07 0.05 -0.28 -0.28 -0.28	0.07 -0.26 0.05 -0.22 -0.21 -0.35 -0.26 -0.30 -0.26 -0.30	0.24 -0.23 -0.19 -0.33 -0.33

FIGURE 1: NRC TWIN OTTER ATMOSPHERIC RESEARCH AIRCRAFT AS INSTRUMENTED FOR SGP97

-

FIGURE 2: FLUX AIRCRAFT TRACKS - SGP97

End time: 190648 TWIN OTTER DATA

SGP , RADUP CORR'D,

FLIGHT 19, EL RENO, KINGFISHER AND DE-DW TRACKS Start time: 155500 End time: 190

FIGURE 3: FLIGHT TRACK PLOT FOR FLIGHT 19

FIGURE 4: SOUNDING DATA FROM SGP FLIGHT 14

Figure 5
Bowen Ratio vs Day of Year
35-m Twin Otter Data - SGP97

detrended fluxes

Sensible Heat Flux SGP Evening Transition

Latent Heat Flux SGP Evening Transition

CO2 Flux SGP Evening Transition

FIGURE 6: FLUXES MEASURED AT APPROXIMATELY 35 M DURING EVENING TRANSITION FLIGHTS

FIGURE 7: EXAMPLE OF ENTRAINMENT AT TOP OF MIXED LAYER

	-